Solution of the Neumann problem for one four-dimensional elliptic equation
Eurasian mathematical journal, Tome 11 (2020) no. 2, pp. 93-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we investigate the Neumann problem for a degenerate elliptic equation in four variables. A fundamental solution is used to construct a solution to the problem. The fundamental solutions are written by using the Lauricella's hypergeometric functions. The energyintegral method is used to prove the uniqueness of the solution to the problem under consideration. In the course of proving the existence of the problem solution, differentiation formulas, decomposition formulas, some adjacent relations formulas and the autotransformation formula of hypergeometric functions are used. The Gauss–Ostrogradsky formula is used to express problem's solution in an explicit form.
@article{EMJ_2020_11_2_a9,
     author = {A. S. Berdyshev and A. Hasanov and A. R. Ryskan},
     title = {Solution of the {Neumann} problem for one four-dimensional elliptic equation},
     journal = {Eurasian mathematical journal},
     pages = {93--97},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a9/}
}
TY  - JOUR
AU  - A. S. Berdyshev
AU  - A. Hasanov
AU  - A. R. Ryskan
TI  - Solution of the Neumann problem for one four-dimensional elliptic equation
JO  - Eurasian mathematical journal
PY  - 2020
SP  - 93
EP  - 97
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a9/
LA  - en
ID  - EMJ_2020_11_2_a9
ER  - 
%0 Journal Article
%A A. S. Berdyshev
%A A. Hasanov
%A A. R. Ryskan
%T Solution of the Neumann problem for one four-dimensional elliptic equation
%J Eurasian mathematical journal
%D 2020
%P 93-97
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a9/
%G en
%F EMJ_2020_11_2_a9
A. S. Berdyshev; A. Hasanov; A. R. Ryskan. Solution of the Neumann problem for one four-dimensional elliptic equation. Eurasian mathematical journal, Tome 11 (2020) no. 2, pp. 93-97. http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a9/

[1] P. Agarwal, E. Karimov, M. Mamchuev, M. Ruzhansky, “On boundary-value problems for a partial differential equation with Caputo and Bessel operators”, Recent applications of harmonic analysis to function spaces, differential equations, and data science, Appl. Numer. Harmon. Anal., Birkhauser/Springer, 2017, 707–718 | MR | Zbl

[2] P. Appell, J. Kampe de Feriet, Fonctions hypergeometriques et hyperspheriques. Polynomes d'Hermite, Gauthier Villars, Paris, 1926 | Zbl

[3] A. S. Berdyshev, A. Hasanov, T. Ergashev, “Double-layer potentials for a generalized bi-axially symmetric Helmholtz equation II”, Complex Var. Elliptic Equ., 65:2 (2020), 316–332 | MR | Zbl

[4] L. Bers, Mathematical aspects of subsonic and transonic gas dynamics, Wiley, New York, 1958 | MR | Zbl

[5] P. Candelas, X. de la Ossa, P. Greene, L. Parkes, “A pair of Calabi-Yau manifolds as an exactly soluble super conformal theory”, Nucl. Phys. B, 539 (1991), 21–74 | MR

[6] F. I. Frankl, Selected works on gas dynamics, Nauka, M., 1973 (in Russian) | MR

[7] M. A. Golberg, C. S. Chen, “The method of fundamental solutions for potential, Helmholtz and diffusion problems”, Comput. Mech. Publ., 1998, 103–176 | MR

[8] A. Hasanov, A. S. Berdyshev, A. R. Ryskan, “Fundamental solutions for a class of four-dimensional degenerate elliptic equation”, Complex Var. Elliptic Equ., 65:4 (2020), 632–647 | MR | Zbl

[9] M. Itagaki, “Higher order three-dimensional fundamental solutions to the Helmholtz and the modified Helmholtz equations”, Eng. Anal. Bound. Elem., 15 (1995), 289–293

[10] B. G. Korenev, Introduction to the theory of Bessel functions, Nauka, M., 1971 (in Russian) | MR | Zbl

[11] G. Lohofer, “Theory of an electromagnetically levitated metal sphere I: absorbed power”, SIAM J. Appl. Math., 49:2 (1989), 567–581 | MR | Zbl

[12] N. V. Mamayev, A. S. Lukin, D. V. Yurin, M. A. Glazkova, V. E. Sinitsin, “Algorithm of nonlocal mean based on decompositions via Hermite functions in problems of computer tomography”, Proceedings of the 23rd Inter. Conf. on Comp. Graphics and Vision GraphiCon'2013 (Vladivostok, Russia, 2013, Sept. 16–20), 254–258 (in Russian)

[13] Mir, M., 1965 (in Russian) | MR | Zbl | Zbl

[14] H. M. Srivastava, B. R.K. Kashyap, Special functions in queuing theory and related stochastic processes, Academic Prees, New York–San Francisco–London, 1982 | MR | Zbl