Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2020_11_2_a9, author = {A. S. Berdyshev and A. Hasanov and A. R. Ryskan}, title = {Solution of the {Neumann} problem for one four-dimensional elliptic equation}, journal = {Eurasian mathematical journal}, pages = {93--97}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a9/} }
TY - JOUR AU - A. S. Berdyshev AU - A. Hasanov AU - A. R. Ryskan TI - Solution of the Neumann problem for one four-dimensional elliptic equation JO - Eurasian mathematical journal PY - 2020 SP - 93 EP - 97 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a9/ LA - en ID - EMJ_2020_11_2_a9 ER -
A. S. Berdyshev; A. Hasanov; A. R. Ryskan. Solution of the Neumann problem for one four-dimensional elliptic equation. Eurasian mathematical journal, Tome 11 (2020) no. 2, pp. 93-97. http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a9/
[1] P. Agarwal, E. Karimov, M. Mamchuev, M. Ruzhansky, “On boundary-value problems for a partial differential equation with Caputo and Bessel operators”, Recent applications of harmonic analysis to function spaces, differential equations, and data science, Appl. Numer. Harmon. Anal., Birkhauser/Springer, 2017, 707–718 | MR | Zbl
[2] P. Appell, J. Kampe de Feriet, Fonctions hypergeometriques et hyperspheriques. Polynomes d'Hermite, Gauthier Villars, Paris, 1926 | Zbl
[3] A. S. Berdyshev, A. Hasanov, T. Ergashev, “Double-layer potentials for a generalized bi-axially symmetric Helmholtz equation II”, Complex Var. Elliptic Equ., 65:2 (2020), 316–332 | MR | Zbl
[4] L. Bers, Mathematical aspects of subsonic and transonic gas dynamics, Wiley, New York, 1958 | MR | Zbl
[5] P. Candelas, X. de la Ossa, P. Greene, L. Parkes, “A pair of Calabi-Yau manifolds as an exactly soluble super conformal theory”, Nucl. Phys. B, 539 (1991), 21–74 | MR
[6] F. I. Frankl, Selected works on gas dynamics, Nauka, M., 1973 (in Russian) | MR
[7] M. A. Golberg, C. S. Chen, “The method of fundamental solutions for potential, Helmholtz and diffusion problems”, Comput. Mech. Publ., 1998, 103–176 | MR
[8] A. Hasanov, A. S. Berdyshev, A. R. Ryskan, “Fundamental solutions for a class of four-dimensional degenerate elliptic equation”, Complex Var. Elliptic Equ., 65:4 (2020), 632–647 | MR | Zbl
[9] M. Itagaki, “Higher order three-dimensional fundamental solutions to the Helmholtz and the modified Helmholtz equations”, Eng. Anal. Bound. Elem., 15 (1995), 289–293
[10] B. G. Korenev, Introduction to the theory of Bessel functions, Nauka, M., 1971 (in Russian) | MR | Zbl
[11] G. Lohofer, “Theory of an electromagnetically levitated metal sphere I: absorbed power”, SIAM J. Appl. Math., 49:2 (1989), 567–581 | MR | Zbl
[12] N. V. Mamayev, A. S. Lukin, D. V. Yurin, M. A. Glazkova, V. E. Sinitsin, “Algorithm of nonlocal mean based on decompositions via Hermite functions in problems of computer tomography”, Proceedings of the 23rd Inter. Conf. on Comp. Graphics and Vision GraphiCon'2013 (Vladivostok, Russia, 2013, Sept. 16–20), 254–258 (in Russian)
[13] Mir, M., 1965 (in Russian) | MR | Zbl | Zbl
[14] H. M. Srivastava, B. R.K. Kashyap, Special functions in queuing theory and related stochastic processes, Academic Prees, New York–San Francisco–London, 1982 | MR | Zbl