On solvability of parabolic functional differential equations in Banach spaces~(II)
Eurasian mathematical journal, Tome 11 (2020) no. 2, pp. 86-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a parabolic functional differential equation is considered in the spaces $C(0, T; H^s_p (Q))$ for $s$ close to $1$ and $p$ close to $2$. The transformations of the space argument are supposed to be bounded in the spaces $H^s_p (Q)$ with small smoothness exponent and $p$ close to $2$. The corresponding resolvent estimate of the elliptic part of the operator is obtained in order to show that it generates a strongly continuous semigroup.
@article{EMJ_2020_11_2_a8,
     author = {A. M. Selitskii},
     title = {On solvability of parabolic functional differential equations in {Banach} {spaces~(II)}},
     journal = {Eurasian mathematical journal},
     pages = {86--92},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a8/}
}
TY  - JOUR
AU  - A. M. Selitskii
TI  - On solvability of parabolic functional differential equations in Banach spaces~(II)
JO  - Eurasian mathematical journal
PY  - 2020
SP  - 86
EP  - 92
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a8/
LA  - en
ID  - EMJ_2020_11_2_a8
ER  - 
%0 Journal Article
%A A. M. Selitskii
%T On solvability of parabolic functional differential equations in Banach spaces~(II)
%J Eurasian mathematical journal
%D 2020
%P 86-92
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a8/
%G en
%F EMJ_2020_11_2_a8
A. M. Selitskii. On solvability of parabolic functional differential equations in Banach spaces~(II). Eurasian mathematical journal, Tome 11 (2020) no. 2, pp. 86-92. http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a8/

[1] A. M. Selitskii, “On the solvability of parabolic functional differential equations in Banach spaces”, Eurasian Mathematical Journal, 7:4 (2016), 85–91 | MR

[2] M. S. Agranovich, “Spectral problems in Sobolev-type spaces for strongly elliptic systems in Lipschitz domains”, Math. Nachr., 289:16 (2016), 1968–1985 | MR | Zbl

[3] A. B. Muravnik, “Functional differential parabolic equations: integral transformations and qualitative properties of solutions of the Cauchy problem”, J. of Math. Sciences, 216 (2016), 345–496 | MR | Zbl

[4] L. E. Rossovskii, A. R. Khanalyev, “Coercive solvability of nonlocal boundary-value problems for parabolic equations”, Contemporary Math. Fundamental Directions, 62 (2016), 140–151 (in Russian) | MR

[5] Russian Math. Surveys, 71:5 (2016), 801–906 | MR | Zbl

[6] M. S. Agranovich, Sobolev spaces, their generalizations, and elliptic problems in smooth and Lipschitz domains, Springer, Heidelberg–New York, 2015 | MR | Zbl

[7] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer, Berlin–Heidelberg, 1983 | MR | Zbl

[8] R. Haller-Dintelmann, J. Rehberg, “Maximal parabolic regularity for divergence operators including mixed boundary conditions”, J. Differential Equations, 247:5 (2009), 1354–1396 | MR | Zbl

[9] A. F. M. ter Elst, J. Rehberg, “Consistent operator semigroups and their interpolation”, Journal of Operator Theory, 82:1 (2017), 3–21 | MR

[10] Differential Equations, 51:6 (2015), 776–782 | MR | Zbl

[11] R Haller-Dintelmann, A. Jonsson, D. Knees, J. Rehberg, “Elliptic and parabolic regularity for second-order divergence operators with mixed boundary conditions”, Math. Methods in the Applied Sciences, 39:17 (2016), 5007–5026 | MR | Zbl