On solvability of parabolic functional differential equations in Banach spaces~(II)
Eurasian mathematical journal, Tome 11 (2020) no. 2, pp. 86-92

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a parabolic functional differential equation is considered in the spaces $C(0, T; H^s_p (Q))$ for $s$ close to $1$ and $p$ close to $2$. The transformations of the space argument are supposed to be bounded in the spaces $H^s_p (Q)$ with small smoothness exponent and $p$ close to $2$. The corresponding resolvent estimate of the elliptic part of the operator is obtained in order to show that it generates a strongly continuous semigroup.
@article{EMJ_2020_11_2_a8,
     author = {A. M. Selitskii},
     title = {On solvability of parabolic functional differential equations in {Banach} {spaces~(II)}},
     journal = {Eurasian mathematical journal},
     pages = {86--92},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a8/}
}
TY  - JOUR
AU  - A. M. Selitskii
TI  - On solvability of parabolic functional differential equations in Banach spaces~(II)
JO  - Eurasian mathematical journal
PY  - 2020
SP  - 86
EP  - 92
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a8/
LA  - en
ID  - EMJ_2020_11_2_a8
ER  - 
%0 Journal Article
%A A. M. Selitskii
%T On solvability of parabolic functional differential equations in Banach spaces~(II)
%J Eurasian mathematical journal
%D 2020
%P 86-92
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a8/
%G en
%F EMJ_2020_11_2_a8
A. M. Selitskii. On solvability of parabolic functional differential equations in Banach spaces~(II). Eurasian mathematical journal, Tome 11 (2020) no. 2, pp. 86-92. http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a8/