Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2020_11_1_a7, author = {M. B. Muratbekov and Ye. N. Bayandiyev}, title = {Existence and maximal regularity of solutions in $L_2(\mathbb{R}^2)$ for a hyperbolic type differential equation with quickly growing coefficients}, journal = {Eurasian mathematical journal}, pages = {95--100}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_1_a7/} }
TY - JOUR AU - M. B. Muratbekov AU - Ye. N. Bayandiyev TI - Existence and maximal regularity of solutions in $L_2(\mathbb{R}^2)$ for a hyperbolic type differential equation with quickly growing coefficients JO - Eurasian mathematical journal PY - 2020 SP - 95 EP - 100 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2020_11_1_a7/ LA - en ID - EMJ_2020_11_1_a7 ER -
%0 Journal Article %A M. B. Muratbekov %A Ye. N. Bayandiyev %T Existence and maximal regularity of solutions in $L_2(\mathbb{R}^2)$ for a hyperbolic type differential equation with quickly growing coefficients %J Eurasian mathematical journal %D 2020 %P 95-100 %V 11 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2020_11_1_a7/ %G en %F EMJ_2020_11_1_a7
M. B. Muratbekov; Ye. N. Bayandiyev. Existence and maximal regularity of solutions in $L_2(\mathbb{R}^2)$ for a hyperbolic type differential equation with quickly growing coefficients. Eurasian mathematical journal, Tome 11 (2020) no. 1, pp. 95-100. http://geodesic.mathdoc.fr/item/EMJ_2020_11_1_a7/
[1] A. V. Bitsadze, Some classes of partial differential equations, Nauka, M., 1981 (in Russian) | MR | Zbl
[2] K. Kh. Boimatov, “Coercive estimates and separability for second-order elliptic differential equations”, Sov. Math. Dokl., 305:5 (1988), 1033–1036 | MR
[3] K. Kh. Boimatov, “Separability theorems, weighted spacees and their applications”, Trudy MIAN, 170, 1984, 37–76 (in Russian) | MR
[4] W. N. Everitt, M. Giertz, “An example conserning property for differential operators”, Proc. Soc. Edinburgh, 71 (1972), 159–165 | MR
[5] W. N. Everitt, M. Giertz, “On properties of the powers of a formally self-adjoint differential equations”, Proc. London Math. Soc. (2), 24:1 (1972), 149–170 | DOI | MR | Zbl
[6] W. N. Everitt, M. Giertz, “On some properties of the domains of power of certain differential operators”, Proc. London Math. Soc. (2), 24:4 (1972), 756–768 | DOI | MR | Zbl
[7] A. V. Filinovskii, “Spectrum and stabilization in hyperbolic problems”, J. Math. Sci., 234:4 (2018) | DOI | MR | Zbl
[8] K. Friedrichs, “Symmetric hyperbolic linear differential equations”, Comm. Pure and Appl. Math., 7 (1954), 345–392 | DOI | MR | Zbl
[9] L. Gording, “Linear hyperbolic partial diiferential equations with constant coefficients”, Acta Math., 85 (1951), 1–62 | DOI | MR
[10] J. Hadamard, The Cauchy problem for hyperbolic linear partial differential equations, Nauka, M., 1978 (in Russian) | MR
[11] R. Haller, H. Heck, M. Hieber, “Muckenhoupt weights and maximal $L^p$-regularity”, Arch. Math., 81 (2003), 422–430 | DOI | MR | Zbl
[12] T. Sh. Kalmenov, On the theory of initial boundary value problems for differential equations, Almaty, 2013 (in Russian)
[13] T. I. Kiguradze, “On bounded and periodic in the strip solutions of quasilinear hyperbolic systems”, Differential equations, 30:10 (1994), 1760–1773 | MR
[14] T. I. Kiguradze, “On periodic boundary value problems for linear hyperbolic equations”, Differential equations, 29:2 (1993), 281–297 | MR
[15] P. C. Kunstmann, L. Weis, “Maximal $L^p$-regularity for parabolic equations, Fourier multiplier theorems and $H^\infty$-functional calculus”: G. Da Prato et al., Functional Analytic Methods for Evolution Equations, LNM, 1855, eds. M. Iannelli et al., 2004, 65–311 | MR | Zbl
[16] O. A. Ladyzhenskaya, “On the solvability of the basic boundary value problems for the equations of hyperbolic and parabolic types”, DAN USSR, 97:3 (1951), 395–398 | MR
[17] O. A. Ladyzhenskaya, N. N. Uraltseva, Linear and quasilinear equations of elliptic type, Nauka, M., 1973 (in Russian) | MR | Zbl
[18] J. Leray, Hyperbolic differential equations, Nauka, M., 1984 (in Russian) | MR | Zbl
[19] M. Muratbekov, “Separability of an operator of mixed type and the completeness of its root vector system”, Dif. Equat., 27 (1991), 2128–2137 | MR
[20] M. Muratbekov, M. Otelbaev, “On the existence of a resolvent and separability for a class of singular hyperbolic type differential operators on an unbounded domain”, Eurasian Math. J., 7:1 (2016), 50–67 | MR
[21] M. B. Muratbekov, M. M. Muratbekov, “Sturm-Liouville operator with a parameter and its usaqe to spectrum research of some differential operators”, Comp. Var. Ell. Eq., 64:9 (2019), 1457–1476 | MR | Zbl
[22] M. Nagumo, Lectures on modern theory of partial differential equations, M., 1967 (in Russian) | MR
[23] A. M. Nakhushev, Offset problems for partial differential equations, Nauka, M., 2006 (in Russian) | MR
[24] M. Otelbaev, “On the separability of elliptic operators”, DAN SSSR, 234:3 (1977), 540–543 (in Russian) | MR | Zbl
[25] M. Otelbaev, “Coercive estimates and separability theorems for elliptic equations in $R^n$”, Tr. MIAN, 161, 1983, 195–217 (in Russian) | MR | Zbl
[26] S. L. Sobolev, Selected works, v. 2, Publishing institute of mathematics, Novosibirsk, 2006 | MR
[27] L. Weis, “Operator-valued Fourier multiplier theorems and maximal $L^p$-regularity”, Math. Ann., 319 (2001), 735–758 | DOI | MR | Zbl