An estimate of approximation of a matrix-valued function by an interpolation polynomial
Eurasian mathematical journal, Tome 11 (2020) no. 1, pp. 86-94
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $A$ be a square complex matrix; $z_1,\dots,z_n\in\mathbb{C}$ be (possibly repetitive) points of
interpolation; $f$ be a function analytic in a neighborhood of the convex hull of the union of the
spectrum of $A$ and the points $z_1,\dots,z_n$; and $p$ be the interpolation polynomial of $f$ constructed by
the points $z_1,\dots,z_n$. It is proved that under these assumptions
$$
||f(A)-p(A)||\leqslant \frac1{n!}\max_{t\in[0,1]\atop {\mu\in co\{z_1,z_2,\dots,z_n\}}}||\Omega(A)f^{(n)}((1-t)\mu\mathbf{1}+tA)||,
$$
where $\Omega(z)=\prod_{k=1}^n(z-z_k)$ and the symbol $co$ means the convex hull.
@article{EMJ_2020_11_1_a6,
author = {V. G. Kurbatov and I. V. Kurbatova},
title = {An estimate of approximation of a matrix-valued function by an interpolation polynomial},
journal = {Eurasian mathematical journal},
pages = {86--94},
publisher = {mathdoc},
volume = {11},
number = {1},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_1_a6/}
}
TY - JOUR AU - V. G. Kurbatov AU - I. V. Kurbatova TI - An estimate of approximation of a matrix-valued function by an interpolation polynomial JO - Eurasian mathematical journal PY - 2020 SP - 86 EP - 94 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2020_11_1_a6/ LA - en ID - EMJ_2020_11_1_a6 ER -
V. G. Kurbatov; I. V. Kurbatova. An estimate of approximation of a matrix-valued function by an interpolation polynomial. Eurasian mathematical journal, Tome 11 (2020) no. 1, pp. 86-94. http://geodesic.mathdoc.fr/item/EMJ_2020_11_1_a6/