Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2020_11_1_a6, author = {V. G. Kurbatov and I. V. Kurbatova}, title = {An estimate of approximation of a matrix-valued function by an interpolation polynomial}, journal = {Eurasian mathematical journal}, pages = {86--94}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_1_a6/} }
TY - JOUR AU - V. G. Kurbatov AU - I. V. Kurbatova TI - An estimate of approximation of a matrix-valued function by an interpolation polynomial JO - Eurasian mathematical journal PY - 2020 SP - 86 EP - 94 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2020_11_1_a6/ LA - en ID - EMJ_2020_11_1_a6 ER -
V. G. Kurbatov; I. V. Kurbatova. An estimate of approximation of a matrix-valued function by an interpolation polynomial. Eurasian mathematical journal, Tome 11 (2020) no. 1, pp. 86-94. http://geodesic.mathdoc.fr/item/EMJ_2020_11_1_a6/
[1] B. F. Bylov, R. E. Vinograd, D. M. Grobman, V. V. Nemytskii, The theory of Lyapunov exponents and its applications to problems of stability, Izdat. “Nauka”, Moscow, 1966 (in Russian) | MR
[2] J. R. Cardoso, A. Sadeghi, Computation of matrix gamma function, June 2018, arXiv: 1806.10554 [math.NA] | MR
[3] M. Crouzeix, “Bounds for analytical functions of matrices”, Integral Equations Operator Theory, 48:4 (2004), 461–477 | DOI | MR | Zbl
[4] Ph. I. Davies, N. J. Higham, “A Schur-Parlett algorithm for computing matrix functions”, SIAM J. Matrix Anal. Appl., 25:2 (2003), 464–485 (electronic) | DOI | MR | Zbl
[5] Ph. J. Davis, Interpolation, approximation, Dover Publications, Inc., New York, 1975 | MR | Zbl
[6] M. Eiermann, O. G. Ernst, “A restarted Krylov subspace method for the evaluation of matrix functions”, SIAM J. Numer. Anal., 44:6 (2006), 2481–2504 | DOI | MR | Zbl
[7] A. Frommer, S. G?uttel, M. Schweitzer, “Efficient and stable Arnoldi restarts for matrix functions based on quadrature”, SIAM J. Matrix Anal. Appl., 35:2 (2014), 661–683 | DOI | MR | Zbl
[8] A. Frommer, V. Simoncini, “Matrix functions”, Model order reduction: theory, research aspects and applications, Mathematics in Industry, 13, eds. W. H. Schilders, H. A. van der Vorst, J. Rommes, Springer, Berlin, 2008, 275–303 | DOI | MR | Zbl
[9] I. M. Gel'fand, G. E. Shilov, Generalized functions, Translated from the Russian, v. 3, Theory of differential equations, Academic Press, New York–London, 1967 | MR | Zbl
[10] International Monographs on Advanced Mathematics and Physics, Hindustan Publishing Corp., Delhi, 1971 | MR | Zbl
[11] M. I. Gil', “Estimate for the norm of matrix-valued functions”, Linear and Multilinear Algebra, 35:1 (1993), 65–73 | DOI | MR | Zbl
[12] M. I. Gil', “Estimates for entries of matrix valued functions of infinite matrices”, Math. Phys. Anal. Geom., 11:2 (2008), 175–186 | DOI | MR | Zbl
[13] M. I. Gil', “A norm estimate for holomorphic operator functions in an ordered Banach space”, Acta Sci. Math. (Szeged), 80:1–2 (2014), 141–148 | DOI | MR | Zbl
[14] G. H. Golub, Ch. F. Van Loan, Matrix computations, Johns Hopkins Studies in the Mathematical Sciences, third ed., Johns Hopkins University Press, Baltimore, MD, 1996 | MR | Zbl
[15] A. Greenbaum, “Some theoretical results derived from polynomial numerical hulls of Jordan blocks”, Electron. Trans. Numer. Anal., 18 (2004), 81–90 | MR | Zbl
[16] N. J. Higham, Functions of matrices: theory and computation, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008 | MR | Zbl
[17] E. Hille, R. S. Phillips, “Functional analysis and semi-groups”, American Mathematical Society Colloquium Publications, 31, Amer. Math. Soc., Providence, Rhode Island, 1957 | MR | Zbl
[18] M. Ilić, I. W. Turner, D. P. Simpson, “A restarted Lanczos approximation to functions of a symmetric matrix”, IMA J. Numer. Anal., 30:4 (2010), 1044–1061 | DOI | MR | Zbl
[19] Zhongxiao Jia, Hui Lv, “A posteriori error estimates of Krylov subspace approximations to matrix functions”, Numer. Algorithms, 69:1 (2015), 1–28 | DOI | MR | Zbl
[20] Ch. Jordan, Calculus of finite differences, third ed, Chelsea Publishing Co., New York, 1965 | MR | Zbl
[21] “Bo Kágström”, Nordisk Tidskr Informationsbehandling (BIT), 17:1 (1977), 39–57 | MR | Zbl
[22] Chunjing Li, Xiaojing Zhu, Chuanqing Gu, “Matrix Padé-type method for computing the matrix exponential”, Appl. Math. (Irvine), 2:2 (2011), 247–253 | DOI | MR
[23] R. Mathias, “Approximation of matrix-valued functions”, SIAM J. Matrix Anal. Appl., 14:4 (1993), 1061–1063 | DOI | MR | Zbl
[24] H. Tal-Ezer, “On restart and error estimation for Krylov approximation of $w = f(A)v$”, SIAM J. Sci. Comput., 29:6 (2007), 2426–2441 | DOI | MR | Zbl
[25] Ch. F. Van Loan, A study of the matrix exponential, August 1975 ; Reissued as: MIMS EPrint 2006.397, Manchester Institute for Mathematical Sciences, The University of Manchester, UK, November 2006 | MR
[26] Ch. F. Van Loan, “The sensitivity of the matrix exponential”, SIAM J. Numer. Anal., 14:6 (1977), 971–981 | DOI | MR | Zbl
[27] N. J. Young, “A bound for norms of functions of matrices”, Linear Algebra Appl., 37 (1981), 181–186 | DOI | MR | Zbl
[28] Xiaojing Zhu, Chunjing Li, Chuanqing Gu, “A new method for computing the matrix exponential operation based on vector valued rational approximations”, J. Comput. Appl. Math., 236:9 (2012), 2306–2316 | DOI | MR | Zbl