An estimate of approximation of a matrix-valued function by an interpolation polynomial
Eurasian mathematical journal, Tome 11 (2020) no. 1, pp. 86-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a square complex matrix; $z_1,\dots,z_n\in\mathbb{C}$ be (possibly repetitive) points of interpolation; $f$ be a function analytic in a neighborhood of the convex hull of the union of the spectrum of $A$ and the points $z_1,\dots,z_n$; and $p$ be the interpolation polynomial of $f$ constructed by the points $z_1,\dots,z_n$. It is proved that under these assumptions $$ ||f(A)-p(A)||\leqslant \frac1{n!}\max_{t\in[0,1]\atop {\mu\in co\{z_1,z_2,\dots,z_n\}}}||\Omega(A)f^{(n)}((1-t)\mu\mathbf{1}+tA)||, $$ where $\Omega(z)=\prod_{k=1}^n(z-z_k)$ and the symbol $co$ means the convex hull.
@article{EMJ_2020_11_1_a6,
     author = {V. G. Kurbatov and I. V. Kurbatova},
     title = {An estimate of approximation of a matrix-valued function by an interpolation polynomial},
     journal = {Eurasian mathematical journal},
     pages = {86--94},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_1_a6/}
}
TY  - JOUR
AU  - V. G. Kurbatov
AU  - I. V. Kurbatova
TI  - An estimate of approximation of a matrix-valued function by an interpolation polynomial
JO  - Eurasian mathematical journal
PY  - 2020
SP  - 86
EP  - 94
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2020_11_1_a6/
LA  - en
ID  - EMJ_2020_11_1_a6
ER  - 
%0 Journal Article
%A V. G. Kurbatov
%A I. V. Kurbatova
%T An estimate of approximation of a matrix-valued function by an interpolation polynomial
%J Eurasian mathematical journal
%D 2020
%P 86-94
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2020_11_1_a6/
%G en
%F EMJ_2020_11_1_a6
V. G. Kurbatov; I. V. Kurbatova. An estimate of approximation of a matrix-valued function by an interpolation polynomial. Eurasian mathematical journal, Tome 11 (2020) no. 1, pp. 86-94. http://geodesic.mathdoc.fr/item/EMJ_2020_11_1_a6/

[1] B. F. Bylov, R. E. Vinograd, D. M. Grobman, V. V. Nemytskii, The theory of Lyapunov exponents and its applications to problems of stability, Izdat. “Nauka”, Moscow, 1966 (in Russian) | MR

[2] J. R. Cardoso, A. Sadeghi, Computation of matrix gamma function, June 2018, arXiv: 1806.10554 [math.NA] | MR

[3] M. Crouzeix, “Bounds for analytical functions of matrices”, Integral Equations Operator Theory, 48:4 (2004), 461–477 | DOI | MR | Zbl

[4] Ph. I. Davies, N. J. Higham, “A Schur-Parlett algorithm for computing matrix functions”, SIAM J. Matrix Anal. Appl., 25:2 (2003), 464–485 (electronic) | DOI | MR | Zbl

[5] Ph. J. Davis, Interpolation, approximation, Dover Publications, Inc., New York, 1975 | MR | Zbl

[6] M. Eiermann, O. G. Ernst, “A restarted Krylov subspace method for the evaluation of matrix functions”, SIAM J. Numer. Anal., 44:6 (2006), 2481–2504 | DOI | MR | Zbl

[7] A. Frommer, S. G?uttel, M. Schweitzer, “Efficient and stable Arnoldi restarts for matrix functions based on quadrature”, SIAM J. Matrix Anal. Appl., 35:2 (2014), 661–683 | DOI | MR | Zbl

[8] A. Frommer, V. Simoncini, “Matrix functions”, Model order reduction: theory, research aspects and applications, Mathematics in Industry, 13, eds. W. H. Schilders, H. A. van der Vorst, J. Rommes, Springer, Berlin, 2008, 275–303 | DOI | MR | Zbl

[9] I. M. Gel'fand, G. E. Shilov, Generalized functions, Translated from the Russian, v. 3, Theory of differential equations, Academic Press, New York–London, 1967 | MR | Zbl

[10] International Monographs on Advanced Mathematics and Physics, Hindustan Publishing Corp., Delhi, 1971 | MR | Zbl

[11] M. I. Gil', “Estimate for the norm of matrix-valued functions”, Linear and Multilinear Algebra, 35:1 (1993), 65–73 | DOI | MR | Zbl

[12] M. I. Gil', “Estimates for entries of matrix valued functions of infinite matrices”, Math. Phys. Anal. Geom., 11:2 (2008), 175–186 | DOI | MR | Zbl

[13] M. I. Gil', “A norm estimate for holomorphic operator functions in an ordered Banach space”, Acta Sci. Math. (Szeged), 80:1–2 (2014), 141–148 | DOI | MR | Zbl

[14] G. H. Golub, Ch. F. Van Loan, Matrix computations, Johns Hopkins Studies in the Mathematical Sciences, third ed., Johns Hopkins University Press, Baltimore, MD, 1996 | MR | Zbl

[15] A. Greenbaum, “Some theoretical results derived from polynomial numerical hulls of Jordan blocks”, Electron. Trans. Numer. Anal., 18 (2004), 81–90 | MR | Zbl

[16] N. J. Higham, Functions of matrices: theory and computation, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008 | MR | Zbl

[17] E. Hille, R. S. Phillips, “Functional analysis and semi-groups”, American Mathematical Society Colloquium Publications, 31, Amer. Math. Soc., Providence, Rhode Island, 1957 | MR | Zbl

[18] M. Ilić, I. W. Turner, D. P. Simpson, “A restarted Lanczos approximation to functions of a symmetric matrix”, IMA J. Numer. Anal., 30:4 (2010), 1044–1061 | DOI | MR | Zbl

[19] Zhongxiao Jia, Hui Lv, “A posteriori error estimates of Krylov subspace approximations to matrix functions”, Numer. Algorithms, 69:1 (2015), 1–28 | DOI | MR | Zbl

[20] Ch. Jordan, Calculus of finite differences, third ed, Chelsea Publishing Co., New York, 1965 | MR | Zbl

[21] “Bo Kágström”, Nordisk Tidskr Informationsbehandling (BIT), 17:1 (1977), 39–57 | MR | Zbl

[22] Chunjing Li, Xiaojing Zhu, Chuanqing Gu, “Matrix Padé-type method for computing the matrix exponential”, Appl. Math. (Irvine), 2:2 (2011), 247–253 | DOI | MR

[23] R. Mathias, “Approximation of matrix-valued functions”, SIAM J. Matrix Anal. Appl., 14:4 (1993), 1061–1063 | DOI | MR | Zbl

[24] H. Tal-Ezer, “On restart and error estimation for Krylov approximation of $w = f(A)v$”, SIAM J. Sci. Comput., 29:6 (2007), 2426–2441 | DOI | MR | Zbl

[25] Ch. F. Van Loan, A study of the matrix exponential, August 1975 ; Reissued as: MIMS EPrint 2006.397, Manchester Institute for Mathematical Sciences, The University of Manchester, UK, November 2006 | MR

[26] Ch. F. Van Loan, “The sensitivity of the matrix exponential”, SIAM J. Numer. Anal., 14:6 (1977), 971–981 | DOI | MR | Zbl

[27] N. J. Young, “A bound for norms of functions of matrices”, Linear Algebra Appl., 37 (1981), 181–186 | DOI | MR | Zbl

[28] Xiaojing Zhu, Chunjing Li, Chuanqing Gu, “A new method for computing the matrix exponential operation based on vector valued rational approximations”, J. Comput. Appl. Math., 236:9 (2012), 2306–2316 | DOI | MR | Zbl