An estimate of approximation of a matrix-valued function by an interpolation polynomial
Eurasian mathematical journal, Tome 11 (2020) no. 1, pp. 86-94

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a square complex matrix; $z_1,\dots,z_n\in\mathbb{C}$ be (possibly repetitive) points of interpolation; $f$ be a function analytic in a neighborhood of the convex hull of the union of the spectrum of $A$ and the points $z_1,\dots,z_n$; and $p$ be the interpolation polynomial of $f$ constructed by the points $z_1,\dots,z_n$. It is proved that under these assumptions $$ ||f(A)-p(A)||\leqslant \frac1{n!}\max_{t\in[0,1]\atop {\mu\in co\{z_1,z_2,\dots,z_n\}}}||\Omega(A)f^{(n)}((1-t)\mu\mathbf{1}+tA)||, $$ where $\Omega(z)=\prod_{k=1}^n(z-z_k)$ and the symbol $co$ means the convex hull.
@article{EMJ_2020_11_1_a6,
     author = {V. G. Kurbatov and I. V. Kurbatova},
     title = {An estimate of approximation of a matrix-valued function by an interpolation polynomial},
     journal = {Eurasian mathematical journal},
     pages = {86--94},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_1_a6/}
}
TY  - JOUR
AU  - V. G. Kurbatov
AU  - I. V. Kurbatova
TI  - An estimate of approximation of a matrix-valued function by an interpolation polynomial
JO  - Eurasian mathematical journal
PY  - 2020
SP  - 86
EP  - 94
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2020_11_1_a6/
LA  - en
ID  - EMJ_2020_11_1_a6
ER  - 
%0 Journal Article
%A V. G. Kurbatov
%A I. V. Kurbatova
%T An estimate of approximation of a matrix-valued function by an interpolation polynomial
%J Eurasian mathematical journal
%D 2020
%P 86-94
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2020_11_1_a6/
%G en
%F EMJ_2020_11_1_a6
V. G. Kurbatov; I. V. Kurbatova. An estimate of approximation of a matrix-valued function by an interpolation polynomial. Eurasian mathematical journal, Tome 11 (2020) no. 1, pp. 86-94. http://geodesic.mathdoc.fr/item/EMJ_2020_11_1_a6/