LCT based integral transforms and Hausdorff operators
Eurasian mathematical journal, Tome 11 (2020) no. 1, pp. 57-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, it is shown that certain Hausdorff operator and its adjoint are connected by linear canonical sine as well as linear canonical cosine transforms. The results have been proved in one as well as in two dimensions.
@article{EMJ_2020_11_1_a4,
     author = {P. Jain and S. Jain and V. D. Stepanov},
     title = {LCT based integral transforms and {Hausdorff} operators},
     journal = {Eurasian mathematical journal},
     pages = {57--71},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_1_a4/}
}
TY  - JOUR
AU  - P. Jain
AU  - S. Jain
AU  - V. D. Stepanov
TI  - LCT based integral transforms and Hausdorff operators
JO  - Eurasian mathematical journal
PY  - 2020
SP  - 57
EP  - 71
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2020_11_1_a4/
LA  - en
ID  - EMJ_2020_11_1_a4
ER  - 
%0 Journal Article
%A P. Jain
%A S. Jain
%A V. D. Stepanov
%T LCT based integral transforms and Hausdorff operators
%J Eurasian mathematical journal
%D 2020
%P 57-71
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2020_11_1_a4/
%G en
%F EMJ_2020_11_1_a4
P. Jain; S. Jain; V. D. Stepanov. LCT based integral transforms and Hausdorff operators. Eurasian mathematical journal, Tome 11 (2020) no. 1, pp. 57-71. http://geodesic.mathdoc.fr/item/EMJ_2020_11_1_a4/

[1] M. J. Bastiaans, “Wigner ditribution function and its application to first-order optics”, J. Opt. Soc. Amer., 69 (1979), 1710–1716 | DOI

[2] C. Bennett, R. Sharpley, Interpolation of Operators, Pure Applied Math., 129, Academic Press, Boston, MA, 1988 | MR | Zbl

[3] S. A. Collins, “Lens-system diffraction integral written in terms of matrix optics”, J. Opt. Soc. Amer., 60 (1970), 1168–1177 | DOI

[4] R. R. Goldberg, “Certain operators and Fourier transforms on $L^2$”, Proc. Amer. Math. Soc., 10:1959, 385–390 | MR | Zbl

[5] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge University Press, 1934, xii+324 pp. | MR

[6] P. Jain, S. Jain, R. Kumar, “On fractional convolutions and distributions”, Integral Transforms and Special Functions, 26 (2015), 885–899 | DOI | MR | Zbl

[7] D. F. V. James, G. S. Agarwal, “The generalized Fresnel transform and its applications to optics”, Opt. Commun., 126 (1996), 207–212 | DOI

[8] N. K. Karapetiants, S. G. Samko, Equations with involutive operators, Birkhäuser Boston, Inc, Boston, MA, 2001, xxiv+427 pp. | MR | Zbl

[9] A. Koc, H. M. Ozaktas, C. Candan, M. A. Kutey, “Digital computation of linear canonical transforms”, IEEE Trans. Signal Proc., 56 (2008), 2383–2394 | DOI | MR | Zbl

[10] E. Liflyand, “Hausdorff operators on Hardy spaces”, Eurasian Math. J., 4:4 (2013), 101–141 | MR | Zbl

[11] M. Moshinsky, C. Quesne, “Linear canonical transformations and their unitary representations”, J. Math. Phys., 12 (1971), 1772–1783 | DOI | MR

[12] C. Palma, V. Bagini, “Extension of the Fresnel transform to ABCD systems”, J. Opt. Soc. Amer., 14 (1997), 1774–1779 | DOI | MR

[13] A. Prasad, Z. A. Ansari, P. Jain, The linear canonical transform and pseudo-differential operator, submitted | MR

[14] A. E. Siegman, Lasers, University Science Books, Mill Valley, CA, 1986

[15] V. D. Stepanov, “On operators in $L_p(R_n)$ spaces which commute with shifts”, Sib. Math. J., 15:3 (1974), 496–501 | DOI | MR

[16] E. C. Titchmarsh, Introduction to the theory of Fourier integrals, Oxford, 1937 | MR

[17] L. Zhao, J. J. Healy, J. T. Sheridan, “Two-dimensional nonseparable linear canonical transform: sampling theorem and unitary discretization”, J. Opt. Soc. Am. A, 31 (2014), 2631–2641 | DOI