Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2020_11_1_a4, author = {P. Jain and S. Jain and V. D. Stepanov}, title = {LCT based integral transforms and {Hausdorff} operators}, journal = {Eurasian mathematical journal}, pages = {57--71}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_1_a4/} }
P. Jain; S. Jain; V. D. Stepanov. LCT based integral transforms and Hausdorff operators. Eurasian mathematical journal, Tome 11 (2020) no. 1, pp. 57-71. http://geodesic.mathdoc.fr/item/EMJ_2020_11_1_a4/
[1] M. J. Bastiaans, “Wigner ditribution function and its application to first-order optics”, J. Opt. Soc. Amer., 69 (1979), 1710–1716 | DOI
[2] C. Bennett, R. Sharpley, Interpolation of Operators, Pure Applied Math., 129, Academic Press, Boston, MA, 1988 | MR | Zbl
[3] S. A. Collins, “Lens-system diffraction integral written in terms of matrix optics”, J. Opt. Soc. Amer., 60 (1970), 1168–1177 | DOI
[4] R. R. Goldberg, “Certain operators and Fourier transforms on $L^2$”, Proc. Amer. Math. Soc., 10:1959, 385–390 | MR | Zbl
[5] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge University Press, 1934, xii+324 pp. | MR
[6] P. Jain, S. Jain, R. Kumar, “On fractional convolutions and distributions”, Integral Transforms and Special Functions, 26 (2015), 885–899 | DOI | MR | Zbl
[7] D. F. V. James, G. S. Agarwal, “The generalized Fresnel transform and its applications to optics”, Opt. Commun., 126 (1996), 207–212 | DOI
[8] N. K. Karapetiants, S. G. Samko, Equations with involutive operators, Birkhäuser Boston, Inc, Boston, MA, 2001, xxiv+427 pp. | MR | Zbl
[9] A. Koc, H. M. Ozaktas, C. Candan, M. A. Kutey, “Digital computation of linear canonical transforms”, IEEE Trans. Signal Proc., 56 (2008), 2383–2394 | DOI | MR | Zbl
[10] E. Liflyand, “Hausdorff operators on Hardy spaces”, Eurasian Math. J., 4:4 (2013), 101–141 | MR | Zbl
[11] M. Moshinsky, C. Quesne, “Linear canonical transformations and their unitary representations”, J. Math. Phys., 12 (1971), 1772–1783 | DOI | MR
[12] C. Palma, V. Bagini, “Extension of the Fresnel transform to ABCD systems”, J. Opt. Soc. Amer., 14 (1997), 1774–1779 | DOI | MR
[13] A. Prasad, Z. A. Ansari, P. Jain, The linear canonical transform and pseudo-differential operator, submitted | MR
[14] A. E. Siegman, Lasers, University Science Books, Mill Valley, CA, 1986
[15] V. D. Stepanov, “On operators in $L_p(R_n)$ spaces which commute with shifts”, Sib. Math. J., 15:3 (1974), 496–501 | DOI | MR
[16] E. C. Titchmarsh, Introduction to the theory of Fourier integrals, Oxford, 1937 | MR
[17] L. Zhao, J. J. Healy, J. T. Sheridan, “Two-dimensional nonseparable linear canonical transform: sampling theorem and unitary discretization”, J. Opt. Soc. Am. A, 31 (2014), 2631–2641 | DOI