On smooth solutions of a class of almost hypoelliptic equations of constant strength
Eurasian mathematical journal, Tome 10 (2019) no. 4, pp. 92-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we state a new theorem about smoothness of solutions of almost hypoelliptic and hypoelliptic by Burenkov equation $P(x',D)u=0$, where the coefficients of the linear differential operator $P(x, D) = P(x_1,\dots, x_n, D_1,\dots, D_n)$ of uniformly constant strength depend only on the variables $x' = (x_1,\dots, x_k)$, $k \leqslant n$: if the operator $P(x', D)$ is hypoelliptic by Burenkov and almost hypoelliptic for any $x'\in\mathbb{E}^k$, then all the solutions of the differential equation $P(x', D)u = 0$ belonging to a certain weighted Sobolev class are infinitely differentiable functions.
@article{EMJ_2019_10_4_a9,
     author = {H. G. Ghazaryan and V. N. Margaryan},
     title = {On smooth solutions of a class of almost hypoelliptic equations of constant strength},
     journal = {Eurasian mathematical journal},
     pages = {92--95},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a9/}
}
TY  - JOUR
AU  - H. G. Ghazaryan
AU  - V. N. Margaryan
TI  - On smooth solutions of a class of almost hypoelliptic equations of constant strength
JO  - Eurasian mathematical journal
PY  - 2019
SP  - 92
EP  - 95
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a9/
LA  - en
ID  - EMJ_2019_10_4_a9
ER  - 
%0 Journal Article
%A H. G. Ghazaryan
%A V. N. Margaryan
%T On smooth solutions of a class of almost hypoelliptic equations of constant strength
%J Eurasian mathematical journal
%D 2019
%P 92-95
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a9/
%G en
%F EMJ_2019_10_4_a9
H. G. Ghazaryan; V. N. Margaryan. On smooth solutions of a class of almost hypoelliptic equations of constant strength. Eurasian mathematical journal, Tome 10 (2019) no. 4, pp. 92-95. http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a9/

[1] V. I. Burenkov, “An analogue of Hörmander's theorem on hypoellipticity for functions converging to 0 at infinity”, Proc. 7th Soviet-Czechoslovak Seminar (Yerevan), 1982, 63–67 (in Russian)

[2] V. I. Burenkov, “Conditional hypoellipticity and Fourier multiplies in weighted spaces”, Teubner Texte zur Matematik, 133 (1993), 256–265 | DOI | MR

[3] G. Gudmundsdottir, “Global properties of differential operators of constant strength”, Ark. Mat., 15 (1977), 169–198 | DOI | MR | Zbl

[4] L. Hörmander, The analysis of linear partial differential operators, v. 2, Springer-Verlag, 1983 | MR

[5] G. G. Kazaryan, “Comparison of powers of polynomials and their hypoellipticity”, Proc. Steklov Inst. Math., 4 (1981), 151–167 | MR

[6] G. G. Kazaryan, “On almost hypoelliptic polynomials”, Doklady Ross. Acad. Nauk, Math., 398:6 (2004), 701–704 | MR

[7] H. Lewy, “An example of a smooth linear partial differential equation without solution”, Ann. of Math., 66 (1957), 155–158 | DOI | MR

[8] V. N. Margaryan, H. G. Ghazaryan, “Almost hypoelliptic operators with constant powers”, Eurasian Mathematical Journal, 6:4 (2015), 29–43 | MR

[9] J. Peetre, Theoremes de regularite pour quelques classes d'operateurs differentiels, Thesis, Lund, 1959 | MR