On smooth solutions of a class of almost hypoelliptic equations of constant strength
Eurasian mathematical journal, Tome 10 (2019) no. 4, pp. 92-95
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we state a new theorem about smoothness of solutions of almost hypoelliptic and hypoelliptic by Burenkov equation $P(x',D)u=0$, where the coefficients of the linear differential operator $P(x, D) = P(x_1,\dots, x_n, D_1,\dots, D_n)$ of uniformly constant strength depend only on the variables $x' = (x_1,\dots, x_k)$, $k \leqslant n$: if the operator $P(x', D)$ is hypoelliptic by Burenkov and almost hypoelliptic for any $x'\in\mathbb{E}^k$, then all the solutions of the differential equation $P(x', D)u = 0$ belonging to a certain weighted Sobolev class are infinitely differentiable functions.
@article{EMJ_2019_10_4_a9,
author = {H. G. Ghazaryan and V. N. Margaryan},
title = {On smooth solutions of a class of almost hypoelliptic equations of constant strength},
journal = {Eurasian mathematical journal},
pages = {92--95},
publisher = {mathdoc},
volume = {10},
number = {4},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a9/}
}
TY - JOUR AU - H. G. Ghazaryan AU - V. N. Margaryan TI - On smooth solutions of a class of almost hypoelliptic equations of constant strength JO - Eurasian mathematical journal PY - 2019 SP - 92 EP - 95 VL - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a9/ LA - en ID - EMJ_2019_10_4_a9 ER -
H. G. Ghazaryan; V. N. Margaryan. On smooth solutions of a class of almost hypoelliptic equations of constant strength. Eurasian mathematical journal, Tome 10 (2019) no. 4, pp. 92-95. http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a9/