Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2019_10_4_a9, author = {H. G. Ghazaryan and V. N. Margaryan}, title = {On smooth solutions of a class of almost hypoelliptic equations of constant strength}, journal = {Eurasian mathematical journal}, pages = {92--95}, publisher = {mathdoc}, volume = {10}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a9/} }
TY - JOUR AU - H. G. Ghazaryan AU - V. N. Margaryan TI - On smooth solutions of a class of almost hypoelliptic equations of constant strength JO - Eurasian mathematical journal PY - 2019 SP - 92 EP - 95 VL - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a9/ LA - en ID - EMJ_2019_10_4_a9 ER -
H. G. Ghazaryan; V. N. Margaryan. On smooth solutions of a class of almost hypoelliptic equations of constant strength. Eurasian mathematical journal, Tome 10 (2019) no. 4, pp. 92-95. http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a9/
[1] V. I. Burenkov, “An analogue of Hörmander's theorem on hypoellipticity for functions converging to 0 at infinity”, Proc. 7th Soviet-Czechoslovak Seminar (Yerevan), 1982, 63–67 (in Russian)
[2] V. I. Burenkov, “Conditional hypoellipticity and Fourier multiplies in weighted spaces”, Teubner Texte zur Matematik, 133 (1993), 256–265 | DOI | MR
[3] G. Gudmundsdottir, “Global properties of differential operators of constant strength”, Ark. Mat., 15 (1977), 169–198 | DOI | MR | Zbl
[4] L. Hörmander, The analysis of linear partial differential operators, v. 2, Springer-Verlag, 1983 | MR
[5] G. G. Kazaryan, “Comparison of powers of polynomials and their hypoellipticity”, Proc. Steklov Inst. Math., 4 (1981), 151–167 | MR
[6] G. G. Kazaryan, “On almost hypoelliptic polynomials”, Doklady Ross. Acad. Nauk, Math., 398:6 (2004), 701–704 | MR
[7] H. Lewy, “An example of a smooth linear partial differential equation without solution”, Ann. of Math., 66 (1957), 155–158 | DOI | MR
[8] V. N. Margaryan, H. G. Ghazaryan, “Almost hypoelliptic operators with constant powers”, Eurasian Mathematical Journal, 6:4 (2015), 29–43 | MR
[9] J. Peetre, Theoremes de regularite pour quelques classes d'operateurs differentiels, Thesis, Lund, 1959 | MR