Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2019_10_4_a6, author = {E. Liflyand}, title = {Multidimensional {Fourier} transforms on an amalgam type space}, journal = {Eurasian mathematical journal}, pages = {63--74}, publisher = {mathdoc}, volume = {10}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a6/} }
E. Liflyand. Multidimensional Fourier transforms on an amalgam type space. Eurasian mathematical journal, Tome 10 (2019) no. 4, pp. 63-74. http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a6/
[1] B. Aubertin, J. J. F. Fournier, “Integrability theorems for trigonometric series”, Studia Math., 107 (1993), 33–59 | DOI | MR | Zbl
[2] B. Aubertin, J. J.F. Fournier, “Integrability of multiple series”, Fourier analysis: analytic and geometric aspects, Lecture notes in pure and applied math., 157, eds. W. O. Bray, P. S. Milojević, Č. V. Stanojević, Marcel Dekker, Inc., New York, 1994, 47–75 | MR | Zbl
[3] S. Bochner, Lectures on Fourier integrals, Princeton Univ. Press, Princeton, N.J., 1959 | MR | Zbl
[4] M. Buntinas, N. Tanović-Miller, “New integrability and $L^1$-convergence classes for even trigonometric series II”, Appr. Theory, Colloq. Math. Soc. János Bolyai, 58, eds. J. Szabados, K. Tandori, North-Holland, Amsterdam, 1991, 103–125 | MR
[5] H. Feichtinger, “Wiener amalgams over Euclidean spaces and some of their applications”, Function spaces (Edwardsville, IL, 1990), Lect. Notes Pure Appl. Math., 136, Dekker, New York, 1992, 123–137 | MR
[6] J. J. F. Fournier, J. Stewart, “Amalgams of $L^p$ and $\ell^q$”, Bull. Amer. Math. Soc. (N.S.), 13 (1985), 1–21 | DOI | MR | Zbl
[7] D. V. Giang, F. Móricz, “Lebesgue integrability of double Fourier transforms”, Acta Sci. Math. (Szeged), 58 (1993), 299–328 | MR | Zbl
[8] C. Heil, “An Introduction to weighted Wiener amalgams”, Wavelets and their Applications (Chennai, 2002), eds. M. Krishna, R. Radha, S. Thangavelu, Allied Publishers, New Delhi, 2003, 183–216
[9] A. Iosevich, E. Liflyand, Decay of the Fourier transform: analytic and geometric aspects, Birkhauser, 2014 | MR | Zbl
[10] E. Liflyand, “Fourier transforms on an amalgam type space”, Monatsh. Math., 172 (2013), 345–355 | DOI | MR | Zbl
[11] E. Liflyand, “Integrability spaces for the Fourier transform of a function of bounded variation”, J. Math. Anal. Appl., 436 (2016), 1082–1101 | DOI | MR | Zbl
[12] E. Liflyand, “Multiple Fourier transforms and trigonometric series in line with Hardy's variation”, Contemporary Math., 659, 2016, 135–155 | DOI | MR | Zbl
[13] E. Liflyand, Functions of bounded variation and their Fourier transforms, Birkhäuser, 2019 | MR | Zbl
[14] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, N.J., 1971 | MR | Zbl