Multidimensional Fourier transforms on an amalgam type space
Eurasian mathematical journal, Tome 10 (2019) no. 4, pp. 63-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

Generalizing the known results on the Fourier transforms on an amalgam type space, we introduce a multidimensional analogue of such a space, a subspace of $L^1(\mathbb{R}_+^n)$. Integrability results for the Fourier transforms are obtained provided that certain derivatives of the transformed function are in that space. As an application, we obtain conditions for the integrability of multiple trigonometric series.
@article{EMJ_2019_10_4_a6,
     author = {E. Liflyand},
     title = {Multidimensional {Fourier} transforms on an amalgam type space},
     journal = {Eurasian mathematical journal},
     pages = {63--74},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a6/}
}
TY  - JOUR
AU  - E. Liflyand
TI  - Multidimensional Fourier transforms on an amalgam type space
JO  - Eurasian mathematical journal
PY  - 2019
SP  - 63
EP  - 74
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a6/
LA  - en
ID  - EMJ_2019_10_4_a6
ER  - 
%0 Journal Article
%A E. Liflyand
%T Multidimensional Fourier transforms on an amalgam type space
%J Eurasian mathematical journal
%D 2019
%P 63-74
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a6/
%G en
%F EMJ_2019_10_4_a6
E. Liflyand. Multidimensional Fourier transforms on an amalgam type space. Eurasian mathematical journal, Tome 10 (2019) no. 4, pp. 63-74. http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a6/

[1] B. Aubertin, J. J. F. Fournier, “Integrability theorems for trigonometric series”, Studia Math., 107 (1993), 33–59 | DOI | MR | Zbl

[2] B. Aubertin, J. J.F. Fournier, “Integrability of multiple series”, Fourier analysis: analytic and geometric aspects, Lecture notes in pure and applied math., 157, eds. W. O. Bray, P. S. Milojević, Č. V. Stanojević, Marcel Dekker, Inc., New York, 1994, 47–75 | MR | Zbl

[3] S. Bochner, Lectures on Fourier integrals, Princeton Univ. Press, Princeton, N.J., 1959 | MR | Zbl

[4] M. Buntinas, N. Tanović-Miller, “New integrability and $L^1$-convergence classes for even trigonometric series II”, Appr. Theory, Colloq. Math. Soc. János Bolyai, 58, eds. J. Szabados, K. Tandori, North-Holland, Amsterdam, 1991, 103–125 | MR

[5] H. Feichtinger, “Wiener amalgams over Euclidean spaces and some of their applications”, Function spaces (Edwardsville, IL, 1990), Lect. Notes Pure Appl. Math., 136, Dekker, New York, 1992, 123–137 | MR

[6] J. J. F. Fournier, J. Stewart, “Amalgams of $L^p$ and $\ell^q$”, Bull. Amer. Math. Soc. (N.S.), 13 (1985), 1–21 | DOI | MR | Zbl

[7] D. V. Giang, F. Móricz, “Lebesgue integrability of double Fourier transforms”, Acta Sci. Math. (Szeged), 58 (1993), 299–328 | MR | Zbl

[8] C. Heil, “An Introduction to weighted Wiener amalgams”, Wavelets and their Applications (Chennai, 2002), eds. M. Krishna, R. Radha, S. Thangavelu, Allied Publishers, New Delhi, 2003, 183–216

[9] A. Iosevich, E. Liflyand, Decay of the Fourier transform: analytic and geometric aspects, Birkhauser, 2014 | MR | Zbl

[10] E. Liflyand, “Fourier transforms on an amalgam type space”, Monatsh. Math., 172 (2013), 345–355 | DOI | MR | Zbl

[11] E. Liflyand, “Integrability spaces for the Fourier transform of a function of bounded variation”, J. Math. Anal. Appl., 436 (2016), 1082–1101 | DOI | MR | Zbl

[12] E. Liflyand, “Multiple Fourier transforms and trigonometric series in line with Hardy's variation”, Contemporary Math., 659, 2016, 135–155 | DOI | MR | Zbl

[13] E. Liflyand, Functions of bounded variation and their Fourier transforms, Birkhäuser, 2019 | MR | Zbl

[14] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, N.J., 1971 | MR | Zbl