O'Neil-type inequalities for convolutions in anisotropic Lorentz spaces
Eurasian mathematical journal, Tome 10 (2019) no. 3, pp. 68-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the boundedness of convolutions in the anisotropic Lorentz spaces.
@article{EMJ_2019_10_3_a5,
     author = {N. T. Tleukhanova and K. K. Sadykova},
     title = {O'Neil-type inequalities for convolutions in anisotropic {Lorentz} spaces},
     journal = {Eurasian mathematical journal},
     pages = {68--83},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_3_a5/}
}
TY  - JOUR
AU  - N. T. Tleukhanova
AU  - K. K. Sadykova
TI  - O'Neil-type inequalities for convolutions in anisotropic Lorentz spaces
JO  - Eurasian mathematical journal
PY  - 2019
SP  - 68
EP  - 83
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2019_10_3_a5/
LA  - en
ID  - EMJ_2019_10_3_a5
ER  - 
%0 Journal Article
%A N. T. Tleukhanova
%A K. K. Sadykova
%T O'Neil-type inequalities for convolutions in anisotropic Lorentz spaces
%J Eurasian mathematical journal
%D 2019
%P 68-83
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2019_10_3_a5/
%G en
%F EMJ_2019_10_3_a5
N. T. Tleukhanova; K. K. Sadykova. O'Neil-type inequalities for convolutions in anisotropic Lorentz spaces. Eurasian mathematical journal, Tome 10 (2019) no. 3, pp. 68-83. http://geodesic.mathdoc.fr/item/EMJ_2019_10_3_a5/

[1] J. Bastero, M. Milman, F. Ruiz, “A note on $L(\infty,q)$ spaces and Sobolev embeddings”, Indiana Univ. Math. J., 52 (2003), 1215–1230 | MR | Zbl

[2] C. Bennet, R. DeVore, R. Sharpley, “Weak-$L^\infty$ and BMO”, Ann. Math., 113:2 (1981), 601–611 | MR | Zbl

[3] C. Bennett, R. Sharpley, Interpolation of operators, Academic Press, San Diego, 1988 | MR | Zbl

[4] O. V. Besov, V. P. Il'in, S. M. Nikolskii, Integral representations of functions and embedding theorems, Nauka, M., 1975 | MR | Zbl

[5] A. P. Blozinski, “On a convolution theorem for $L(p,q)$ spases”, Trans. Am. Math. Soc., 164 (1972), 255–265 | MR

[6] A. P. Blozinski, “Convolution of $L(p,q)$ functions”, Proc. Am. Math. Soc., 32:1 (1972), 237–240 | MR | Zbl

[7] A. P. Blozinski, “Multivariate rearrangements and Banach function spaces with mixed norms”, Trans. Am. Math. Soc., 263 (1981), 149–167 | MR | Zbl

[8] M. J. Carro, A. Gogatishvili, J. Martin, L. Pick, “Functional properties of rearrangement invariant spaces defined in terms of oscilations”, J. Funct. Anal., 227 (2005), 335–404 | MR

[9] D. V. Gorbachev, V. I. Ivanov, S. Y. Tikhonov, “Positive $L_p$-bounded Dunkl-type generalized translation operator and its applications”, Constructive Approximation, 49:3 (2019), 555–605 | MR | Zbl

[10] R. A. Hunt, “On $L(p, q)$ spases”, Enseign. Math., 12:2 (1966), 249–276 | MR | Zbl

[11] M. Křepela, “Convolution in weighted Lorentz spaces of type”, Math. Scand., 119:1 (2016), 113–132 | MR

[12] E. D. Nursultanov, “Interpolation theorems for anisotropic function spaces and their applications”, Dokl. Math., 69:1 (2004), 16–19 | MR | Zbl

[13] E. Nursultanov, S. Tikhonov, “Convolution inequalities in Lorentz spaces”, J. Fourier Anal. Appl, 17 (2011), 486–505 | MR | Zbl

[14] E. Nursultanov, S. Tikhonov, N. Tleukhanova, “Norm inequalities for convolution operators”, C. R. Acad. Sci. Paris, I, 347 (2009), 1385–1388 | MR | Zbl

[15] E. Nursultanov, S. Tikhonov, N. Tleukhanova, “Norm convolution inequalities in Lebesgue spaces”, Rev. Mat. Iberoam., 34:2 (2018), 811–838 | MR | Zbl

[16] R. O'Neil, “Convolution operators and $L(p, q)$ spases”, Duke Math. J., 30 (1963), 129–142 | MR | Zbl

[17] V. D. Stepanov, Some topics in the theory of integral convolution operators, Dalnauka, Vladivostok, 2000 | MR

[18] L. Y. H. Yap, “Some remarks on convolution operators and $L(p,q)$ spases”, Duke Math. J., 36 (1969), 647–658 | MR | Zbl