Minima of functions on $(q_1, q_2)$-quasimetric spaces
Eurasian mathematical journal, Tome 10 (2019) no. 2, pp. 84-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

Lower semicontinuous functions defined on a complete $(q_1, q_2)$-quasimetric spaces are considered. For these functions, minimum existence conditions are obtained.
@article{EMJ_2019_10_2_a6,
     author = {R. Sengupta and S. E. Zhukovskiy},
     title = {Minima of functions on $(q_1, q_2)$-quasimetric spaces},
     journal = {Eurasian mathematical journal},
     pages = {84--92},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_2_a6/}
}
TY  - JOUR
AU  - R. Sengupta
AU  - S. E. Zhukovskiy
TI  - Minima of functions on $(q_1, q_2)$-quasimetric spaces
JO  - Eurasian mathematical journal
PY  - 2019
SP  - 84
EP  - 92
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2019_10_2_a6/
LA  - en
ID  - EMJ_2019_10_2_a6
ER  - 
%0 Journal Article
%A R. Sengupta
%A S. E. Zhukovskiy
%T Minima of functions on $(q_1, q_2)$-quasimetric spaces
%J Eurasian mathematical journal
%D 2019
%P 84-92
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2019_10_2_a6/
%G en
%F EMJ_2019_10_2_a6
R. Sengupta; S. E. Zhukovskiy. Minima of functions on $(q_1, q_2)$-quasimetric spaces. Eurasian mathematical journal, Tome 10 (2019) no. 2, pp. 84-92. http://geodesic.mathdoc.fr/item/EMJ_2019_10_2_a6/

[1] A. V. Arutyunov, “Caristi's condition and existence of a minimum of a lower bounded function in a metric space. Applications to the theory of coincidence points”, Proceedings of the Steklov Institute of Mathematics, 291, no. 1, 2015, 24–37 | DOI | MR | Zbl

[2] A. V. Arutyunov, “Second-order conditions in extremal problems. The abnormal points”, Transactions of the American Mathematical Society, 350:11 (1998), 4341–4365 | DOI | MR | Zbl

[3] A. V. Arutyunov, E. R. Avakov, A. F. Izmailov, “Directional regularity and metric regularity”, SIAM Journal on Optimization, 18:1 (2007), 24–37 | MR

[4] A. V. Arutyunov, A. V. Greshnov, “The theory of $(q_1, q_2)$-quasimetric spaces and coincidence points”, Dokl. Math., 94:1 (2016), 434–437 | DOI | MR | Zbl

[5] A. V. Arutyunov, A. V. Greshnov, “$(q_1, q_2)$-quasimetric spaces. Covering mappings and coincidence points”, Izvestiya: Mathematics, 82:2 (2018), 245–272 | DOI | MR | Zbl

[6] A. V. Arutyunov, A. V. Greshnov, L. V. Lokutsievskii, K. V. Storozhuk, “Topological and geometrical properties of spaces with symmetric and nonsymmetric f-quasimetrics”, Topology and its Applications, 221 (2017), 178–194 | DOI | MR | Zbl

[7] A. V. Arutyunov, R. B. Vinter, “A simple “finite approximations” proof of the Pontryagin maximum principle under reduced differentiability hypotheses”, Set-Valued and Variational Analysis, 12:1–2 (2004), 5–24 | DOI | MR | Zbl

[8] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Coincidence points of set-valued mappings in partially ordered spaces”, Doklady Mathematics, 88:3 (2013), 727–729 | DOI | MR | Zbl

[9] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Coincidence points principle for mappings in partially ordered spaces”, Topology and its Applications, 179 (2015), 13–33 | DOI | MR | Zbl

[10] A. V. Arutyunov, S. E. Zhukovskiy, “Variational principles in nonlinear analysis and their generalization”, Mathematical Notes, 103:5–6 (2018), 1014–1019 | DOI | MR | Zbl

[11] A. V. Arutyunov, S. E. Zhukovskiy, “Existence of local solutions in constrained dynamic systems”, Applicable Analysis, 90:6 (2011), 889–898 | DOI | MR | Zbl

[12] M. Fréchet, “Sur quelques points du calcul fonctionnel”, Palermo Rend., 22 (1906), 1–74 | DOI | Zbl

[13] A. H. Frink, “Distance functions and the metrization problem”, Bull. Amer. Math. Soc., 43:2 (1937), 133–142 | DOI | MR

[14] F. Hausdorff, Grundzüge der Mengenlehre, Von Veit, Leipzig, 1914 | MR

[15] S. I. Nedev, “O-metrizable spaces”, Tr. Mosk. Mat. Obŝ., 24, 1971, 201–236 | MR | Zbl

[16] J. Sh. Ume, “A minimization theorem in quasi-metric spaces and its applications”, Int. J. Math. Math. Sci., 31:7 (2002), 443–447 | DOI | MR | Zbl

[17] S. E. Zhukovskiy, “On continuous selections of finite-valued set-valued mappings”, Eurasian Math. J., 9:1 (2018), 83–87 | MR