Maximal regularity estimates for higher order differential equations with fluctuating coefficients
Eurasian mathematical journal, Tome 10 (2019) no. 2, pp. 65-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give the well-posedness conditions in $L_2(-\infty,+\infty)$ for the following differential equation $$ -y'''+p(x)y'+q(x)y=f(x), $$ where $p$ and $q$ are continuously differentiable and continuous functions, respectively, and $f\in L_2(R)$. Moreover, we prove for the solution y of this equation the following maximal regularity estimate: $$ ||y'''||_2+||py'||_2+||qy||_2\leqslant C||f||_2 $$ (here $||\cdot||_2$ is the norm in $L_2(-\infty,+\infty)$). We assume that the intermediate coefficient $p$ is fast oscillating and not controlled by the coefficient $q$. The sufficient conditions obtained by us are close to necessary ones. We give similar results for the fourth-order differential equation with singular intermediate coefficients.
@article{EMJ_2019_10_2_a4,
     author = {K. N. Ospanov and Zh. B. Yeskabylova and D. R. Beisenova},
     title = {Maximal regularity estimates for higher order differential equations with fluctuating coefficients},
     journal = {Eurasian mathematical journal},
     pages = {65--74},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_2_a4/}
}
TY  - JOUR
AU  - K. N. Ospanov
AU  - Zh. B. Yeskabylova
AU  - D. R. Beisenova
TI  - Maximal regularity estimates for higher order differential equations with fluctuating coefficients
JO  - Eurasian mathematical journal
PY  - 2019
SP  - 65
EP  - 74
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2019_10_2_a4/
LA  - en
ID  - EMJ_2019_10_2_a4
ER  - 
%0 Journal Article
%A K. N. Ospanov
%A Zh. B. Yeskabylova
%A D. R. Beisenova
%T Maximal regularity estimates for higher order differential equations with fluctuating coefficients
%J Eurasian mathematical journal
%D 2019
%P 65-74
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2019_10_2_a4/
%G en
%F EMJ_2019_10_2_a4
K. N. Ospanov; Zh. B. Yeskabylova; D. R. Beisenova. Maximal regularity estimates for higher order differential equations with fluctuating coefficients. Eurasian mathematical journal, Tome 10 (2019) no. 2, pp. 65-74. http://geodesic.mathdoc.fr/item/EMJ_2019_10_2_a4/

[1] O. D. Apyshev, M. O. Otelbaev, “On the spectrum of a class of differential operators and some imbedding theorems”, Math. USSR Izv., 15:4 (1980), 739–764 | MR

[2] R. D. Akhmetkalieva, L. E. Persson, K. N. Ospanov, P. Woll, “Some new results concerning a class of thirdorder differential equations”, Appl. Anal., 94:2 (2015), 419–434 | DOI | MR

[3] A. Birgebaev, M. Otelbaev, “On the separability of the third-order nonlinear differential operator”, Izv. AN Kazakh SSR. Ser. fis. mat., 1984, no. 3, 11–13 | MR | Zbl

[4] A. T. Bulabaev, M. Otelbaev, L. A. Shuster, “Properties of Green's function of the Sturm-Liouville operator and their applications”, Dif. Uravn., 25:7 (1989), 1107–1114 | MR | Zbl

[5] V. A. Galaktionov, “Ordered invariant sets for KdV-type nonlinear evolution equations”, J. Comp. Math. and Math. Phys., 39:9 (1999), 1564–1570 | MR | Zbl

[6] A. I. Kozhanov, Composite type equations and inverse problems, VSP, Utrecht, Netherlands, 1999 | MR | Zbl

[7] I. S. Katz, M. G. Krein, “A criterion for the discrete spectrum of a singular string”, Izv. vuzov. Mat., 1958, no. 2, 136–153 | MR

[8] T. Kato, Perturbation theory for linear operators, Springer, 1995 | MR | Zbl

[9] G. Metafune, D. Pallara, J. Pruss, R. Schnaubelt, “Lp-theory for elliptic operators on $R^d$ with singular coefficients”, Z. Anal. Anw., 24:3 (2005), 497–521 | DOI | MR | Zbl

[10] M. B. Turatbekov, Separability theorems and spectral properties of one class of differential operators with irregular coefficients, The thesis for the degree of doctor of phys. math. sciences, Almaty, 1994

[11] M. B. Turatbekov, M. M. Turatbekov, K. N. Ospanov, “Coercive solvability of the odd-order differential equation and its applications”, Dokl. Math., 435:3 (2010), 310–313 | MR

[12] K. T. Mynbaev, M. O. Otelbaev, Weighted functional spaces and the spectrum of differential operators, Nauka, M., 1988 | MR | Zbl

[13] B. Muckenhoupt, “Hardy's inequality with weights”, Stud. Math., 24:1 (1972), 31–38 | DOI | MR

[14] K. N. Ospanov, “$L_1$-maximal regularity for quasilinear second order differential equation with damped term”, Elec. J. Qual. Th. Dif. Eq., 2015, no. 39, 1–9 | MR

[15] K. N. Ospanov, Zh. B. Yeskabylova, On smoothness property of third-order differential operator, AIP Conference Proceedings, 1880, 2017, 6 pp. | DOI

[16] K. N. Ospanov, “Discreteness and estimates of spectrum of a first order difference operator”, Eurasian Math. J., 9:2 (2018), 89–94 | MR

[17] K. N. Ospanov, R. D. Akhmetkalieva, “Separation and the existence theorem for second order nonlinear differential equation”, Elec. J. Qual. Th. Dif. Eq., 2012, no. 1, 1–12 | MR

[18] M. Otelbaev, “On the separability of elliptic operators”, Sov. Math. Dokl., 234:3 (1977), 540–543 | MR | Zbl