Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2019_10_1_a7, author = {A. A. Vasil'eva}, title = {Kolmogorov widths of weighted {Sobolev} classes with {\textquotedblleft}small{\textquotedblright} singularity sets}, journal = {Eurasian mathematical journal}, pages = {89--92}, publisher = {mathdoc}, volume = {10}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_1_a7/} }
A. A. Vasil'eva. Kolmogorov widths of weighted Sobolev classes with “small” singularity sets. Eurasian mathematical journal, Tome 10 (2019) no. 1, pp. 89-92. http://geodesic.mathdoc.fr/item/EMJ_2019_10_1_a7/
[1] I.V. Boykov, “Approximation of some classes of functions by local splines”, Comput. Math. Math. Phys., 38:1 (1998), 21–29 | MR
[2] I.V. Boykov, Optimal approximation and Kolmogorov widths estimates for certain singular classes related to equations of mathematical physics, arXiv: 1303.0416v1
[3] M. Bricchi, “Existence and properties of h-sets”, Georgian Mathematical Journal, 9:1 (2002), 13–32 | MR | Zbl
[4] T. Mieth, “Entropy and approximation numbers of embeddings of weighted Sobolev spaces”, J. Appr. Theory, 192 (2015), 250–272 | DOI | MR | Zbl
[5] T. Mieth, “Entropy and approximation numbers of weighted Sobolev spaces via bracketing”, J. Funct. Anal., 270:11 (2016), 4322–4339 | DOI | MR | Zbl
[6] A. Pinkus, $n$-widths in approximation theory, Springer, Berlin, 1985 | MR | Zbl
[7] Yu.G. Reshetnyak, “Integral representations of differentiable functions in domains with a nonsmooth boundary”, Sibirsk. Mat. Zh., 21:6 (1980), 108–116 (in Russian) | MR | Zbl
[8] Yu.G. Reshetnyak, “A remark on integral representations of differentiable functions of several variables”, Sibirsk. Mat. Zh., 25:5 (1984), 198–200 (in Russian) | MR | Zbl
[9] V.M. Tikhomirov, “Theory of approximations”, Current problems in mathematics. Fundamental directions, Itogi Nauki i Tekhniki, 14, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., M., 1987, 103–260 ; Encycl. Math. Sci., 14 (1990), 93–243 | MR
[10] H. Triebel, Interpolation theory. Function spaces. Differential operators, Dtsch. Verl. Wiss., Berlin, 1978 ; Mir, M., 1980 | MR | Zbl
[11] H. Triebel, “Entropy and approximation numbers of limiting embeddings, an approach via Hardy inequalities and quadratic forms”, J. Approx. Theory, 164:1 (2012), 31–46 | DOI | MR | Zbl
[12] A.A. Vasil'eva, “Widths of function classes on sets with tree-like structure”, J. Appr. Theory, 192 (2015), 19–59 | DOI | MR | Zbl