Hahn--Banach type theorems on functional separation for convex ordered normed cones
Eurasian mathematical journal, Tome 10 (2019) no. 1, pp. 59-79
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a special class of convex ordered normed cones CONC. For such structures we obtain Hahn–Banach type theorems on functional separation for points. On the base of a Hahn–Banach type theorem on functional separation for points we prove a sublinear version of the Rädström embedding theorem for the class CONC. Some analogues of Hahn–Banach separation theorem for some type of sets in CONC are obtained.
@article{EMJ_2019_10_1_a5,
author = {F. S. Stonyakin},
title = {Hahn--Banach type theorems on functional separation for convex ordered normed cones},
journal = {Eurasian mathematical journal},
pages = {59--79},
publisher = {mathdoc},
volume = {10},
number = {1},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_1_a5/}
}
F. S. Stonyakin. Hahn--Banach type theorems on functional separation for convex ordered normed cones. Eurasian mathematical journal, Tome 10 (2019) no. 1, pp. 59-79. http://geodesic.mathdoc.fr/item/EMJ_2019_10_1_a5/