Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2019_10_1_a5, author = {F. S. Stonyakin}, title = {Hahn--Banach type theorems on functional separation for convex ordered normed cones}, journal = {Eurasian mathematical journal}, pages = {59--79}, publisher = {mathdoc}, volume = {10}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_1_a5/} }
F. S. Stonyakin. Hahn--Banach type theorems on functional separation for convex ordered normed cones. Eurasian mathematical journal, Tome 10 (2019) no. 1, pp. 59-79. http://geodesic.mathdoc.fr/item/EMJ_2019_10_1_a5/
[1] E.G. Bakhtigareeva, M.L. Goldman, “Associate norms and optimal embeddings for a class of two-weighted integral quasi-norms”, Fund. Appl. Math., 19:5 (2014), 3–33 (in Russian) | MR
[2] E.G. Bakhtigareeva, “Optimal Banach function space for a given cone of decreasing functions in a weighted $L_p$-space”, Eurasian Math. J., 6:1 (2015), 6–25 | MR
[3] P.A. Borodin, “The Banach-Mazur theorem for spaces with asymmetric norm”, Math. Notes, 69:3 (2001), 298–305 | DOI | MR | Zbl
[4] S. Cobzas, Functional analysis in asymmetric normed spaces, Birkhauser/Springer, Basel, 2013, 219 pp. | MR | Zbl
[5] C. Mustÿata, “On the extremal semi-Lipschitz functions”, Ann. Numer. Theory Approx., 31 (2002), 103–108 | MR
[6] L.M. Garcia-Raffi, S. Romaguera, E.A. Sanchez-Perez, “Sequence spaces and asymmetric norms in the theory of computational complexity”, Math. Comput. Modelling, 36 (2002), 1–11 | DOI | MR | Zbl
[7] L.M. Garcia-Raffi, S. Romaguera, E.A. Sanchez-Perez, O. Valero, “Metrizability of the unit ball of the dual of a quasi-normed cone”, Bollettino dell'Unione Matematica Italiana, Serie 8, 7-B:2 (2004), 483–492 | MR | Zbl
[8] M.L. Goldman, P.P. Zabreiko, “Optimal Banach function spaces generalized with the cone of nonnegative increasing functions”, Trans. Inst. Math. Nat. Akad. Sci. Belarus, 22:1 (2014), 24–34 (in Russian) | Zbl
[9] K. Keimel, “Topological cones: functional analysis in a $T_0$-setting”, Semigroup Forum, 77 (2008), 109–142 | DOI | MR | Zbl
[10] I.V. Orlov, “Inverse and implicat function theorems in the class of subsmooth maps”, Math. Notes, 99:4 (2016), 619–622 | DOI | MR | Zbl
[11] I.V. Orlov, “Introduction to sublinear analysis”, Contemp. Math. Fundam. Direct., 53 (2014), 64–132 (in Russian) | MR
[12] I.V. Orlov, S.I. Smirnova, “Invertibility of multivalued sublinear operators”, Eurasian Math. J., 6:4 (2015), 44–58 | MR
[13] J.H. Radstrom, “An embedding theorem for space of convex sets”, Proc. Amer. Math. Soc., 3 (1952), 165–169 | DOI | MR | Zbl
[14] S. Romaguera, M. Sanchis, “Semi-Lipschitz functions and best approximation in quasi-metric spaces”, J. Approx. Theory, 103 (2000), 292–301 | DOI | MR | Zbl
[15] Romaguera S., Sanchez-Perez E.A., Valero O., “The dual complexity space as the dual of a normed cone”, Electronic Notes in Theoretical Computer Science, 161 (2006), 165–174 | DOI | Zbl
[16] Romaguera S., Sanchez-Perez E.A., Valero O., “A characterization of generalized monotone normed cones”, Acta Mathematica Sinica, English Series, 23:6 (2007), 1067–1074 | DOI | MR | Zbl
[17] W. Roth, “Hahn-Banach type theorems for locally convex cones”, Journal of the Australian Math. Soc. (Ser. A), 68:1 (2000), 104–125 | MR | Zbl
[18] P. Selinger, “Towards a semantics for higher-order quantum computation”, Proceedings of the 2nd International Workshop on Quantum Programming Languages, Turku Centre for Computer Science General Publication, 33, 2004, 127–143 | MR
[19] F.S. Stonyakin, “Analogues of the Shauder theorem that use anticompacta”, Math. Notes, 99:6 (2016), 954–958 | DOI | MR | Zbl
[20] F.S. Stonyakin, “On Sublinear analogues of weak topologies in normed cones”, Math. Notes, 103:5 (2018), 859–864 | DOI | MR | Zbl
[21] F.S. Stonyakin, “A sublinear analogue of the Banach-Mazur Theorem in separated convex cones with norm”, Math. Notes, 104:1 (2018), 111–120 | DOI | MR | Zbl
[22] F.S. Stonyakin, “An analogue of the Hahn-Banach Theorem for functionals on abstract convex cone”, Eurasian. Math. J., 7:3 (2016), 89–99 | MR
[23] R. Tix, “Some results on Hahn-Banach-type theorems for continuous D-cones”, Theoretical Comput. Sci., 264 (2001), 205–218 | DOI | MR | Zbl