Hardy type inequality with sharp constant for $0 p 1$
Eurasian mathematical journal, Tome 10 (2019) no. 1, pp. 52-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

A power-weighted integral inequality with sharp constant for $0 p 1$ was established by V.I. Burenkov for the Hardy operator $(Hf)(x)=\frac1x\int_0^xf(t)\,dt$ for non-negative non-increasing functions $f$. In this work we consider a more general class of functions $f$ and prove a new Hardy-type inequality with sharp constant for functions of this class.
@article{EMJ_2019_10_1_a4,
     author = {A. Senouci and N. Azzouz},
     title = {Hardy type inequality with sharp constant for $0 < p < 1$},
     journal = {Eurasian mathematical journal},
     pages = {52--58},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_1_a4/}
}
TY  - JOUR
AU  - A. Senouci
AU  - N. Azzouz
TI  - Hardy type inequality with sharp constant for $0 < p < 1$
JO  - Eurasian mathematical journal
PY  - 2019
SP  - 52
EP  - 58
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2019_10_1_a4/
LA  - en
ID  - EMJ_2019_10_1_a4
ER  - 
%0 Journal Article
%A A. Senouci
%A N. Azzouz
%T Hardy type inequality with sharp constant for $0 < p < 1$
%J Eurasian mathematical journal
%D 2019
%P 52-58
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2019_10_1_a4/
%G en
%F EMJ_2019_10_1_a4
A. Senouci; N. Azzouz. Hardy type inequality with sharp constant for $0 < p < 1$. Eurasian mathematical journal, Tome 10 (2019) no. 1, pp. 52-58. http://geodesic.mathdoc.fr/item/EMJ_2019_10_1_a4/

[1] N. Azzouz, B. Halim, A. Senouci, “An inequality for the weighted Hardy operator for $0 p 1$”, Eurasian Math. J., 4:3 (2013), 127–131 | MR | Zbl

[2] J. Bergh, V. Burenkov, L.-E. Persson, “Best constants in reversed Hardy's inequalities for quasi-monotone functions”, Acta Sci. Math., 59:1–2 (1994), 221–239 | MR | Zbl

[3] J. Bergh, V. Burenkov, L.-E. Persson, “On some sharp reversed Holder and Hardy-type inequalities”, Math. Nachr., 167 (1994), 16–29 | MR

[4] V.I. Burenkov, Function spaces. Main integral inequalities related to Lp-spaces, Peoples' Friendship University, M., 1989, 96 pp. (in Russian)

[5] V.I. Burenkov, “On the exact constant in the Hardy inequality with $0 p 1$ for monotone functions”, Proc. Steklov Inst. Mat., 194:4 (1993), 59–63 | MR

[6] V.I. Burenkov, A. Senouci, T.V. Tararykova, “Equivalent quasi-norm involving differences and moduli of continuity”, Complex Variables and Elliptic Equations, 55 (2010), 759–769 | DOI | MR | Zbl

[7] A.M. Caetano, A. Gogatishvili, B. Opic, Embeddings and the growth envelope of Besov spaces involving only slowly varying smoothness, Preprint, 2010-4-27, Institute of Mathematics, AS CR, Prague | MR | Zbl

[8] A. Gogatishvili, B. Opic, W. Trebels, “Limiting reiteration for real interpolation with slowly varying functions”, Mathematische Nachrichten, 278 (2005), 86–107 | DOI | MR | Zbl

[9] A. Gogatishvili, V.D. Stepanov, “Reduction theorems for weighted integral inequalities on the cone of monotone functions”, Russian Math. Surveys, 68:4 (2013), 597–664 | DOI | MR | Zbl

[10] G.H. Hardy, “Notes on somme points in the integral calculus. LXIV. Further inequalities between integrals”, Messenger of Math., 57 (1927), 12–16 | Zbl

[11] A. Kufner, L. Maligranda, L.-E. Persson, The Hardy inequality. About its history and some related results, Vydavatelsky Servis Publishing House, Pilsen, 2007, 162 pp. | MR | Zbl

[12] A. Kufner, L.-E. Persson, Weighted inequalities of Hardy type, World Scientific, New Jersey–London–Singapore-Hong Kong, 2003, xviii+357 pp. | MR | Zbl

[13] P. Rehak, “Nonlinear differential systems and regularly varying functions”, Workshop on BVP's, Institute of Mathematics, Academy of Sciences of the Czech Republic, Brno, 2014, 1–34

[14] A. Senouci, T.V. Tararykova, “Hardy-type inequality for $0 p 1$”, Evraziiskii Matematicheskii Zhurnal, 2 (2007), 112–116