Hardy type inequality with sharp constant for $0 p 1$
Eurasian mathematical journal, Tome 10 (2019) no. 1, pp. 52-58

Voir la notice de l'article provenant de la source Math-Net.Ru

A power-weighted integral inequality with sharp constant for $0 p 1$ was established by V.I. Burenkov for the Hardy operator $(Hf)(x)=\frac1x\int_0^xf(t)\,dt$ for non-negative non-increasing functions $f$. In this work we consider a more general class of functions $f$ and prove a new Hardy-type inequality with sharp constant for functions of this class.
@article{EMJ_2019_10_1_a4,
     author = {A. Senouci and N. Azzouz},
     title = {Hardy type inequality with sharp constant for $0 < p < 1$},
     journal = {Eurasian mathematical journal},
     pages = {52--58},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_1_a4/}
}
TY  - JOUR
AU  - A. Senouci
AU  - N. Azzouz
TI  - Hardy type inequality with sharp constant for $0 < p < 1$
JO  - Eurasian mathematical journal
PY  - 2019
SP  - 52
EP  - 58
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2019_10_1_a4/
LA  - en
ID  - EMJ_2019_10_1_a4
ER  - 
%0 Journal Article
%A A. Senouci
%A N. Azzouz
%T Hardy type inequality with sharp constant for $0 < p < 1$
%J Eurasian mathematical journal
%D 2019
%P 52-58
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2019_10_1_a4/
%G en
%F EMJ_2019_10_1_a4
A. Senouci; N. Azzouz. Hardy type inequality with sharp constant for $0 < p < 1$. Eurasian mathematical journal, Tome 10 (2019) no. 1, pp. 52-58. http://geodesic.mathdoc.fr/item/EMJ_2019_10_1_a4/