Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2019_10_1_a4, author = {A. Senouci and N. Azzouz}, title = {Hardy type inequality with sharp constant for $0 < p < 1$}, journal = {Eurasian mathematical journal}, pages = {52--58}, publisher = {mathdoc}, volume = {10}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_1_a4/} }
A. Senouci; N. Azzouz. Hardy type inequality with sharp constant for $0 < p < 1$. Eurasian mathematical journal, Tome 10 (2019) no. 1, pp. 52-58. http://geodesic.mathdoc.fr/item/EMJ_2019_10_1_a4/
[1] N. Azzouz, B. Halim, A. Senouci, “An inequality for the weighted Hardy operator for $0 p 1$”, Eurasian Math. J., 4:3 (2013), 127–131 | MR | Zbl
[2] J. Bergh, V. Burenkov, L.-E. Persson, “Best constants in reversed Hardy's inequalities for quasi-monotone functions”, Acta Sci. Math., 59:1–2 (1994), 221–239 | MR | Zbl
[3] J. Bergh, V. Burenkov, L.-E. Persson, “On some sharp reversed Holder and Hardy-type inequalities”, Math. Nachr., 167 (1994), 16–29 | MR
[4] V.I. Burenkov, Function spaces. Main integral inequalities related to Lp-spaces, Peoples' Friendship University, M., 1989, 96 pp. (in Russian)
[5] V.I. Burenkov, “On the exact constant in the Hardy inequality with $0 p 1$ for monotone functions”, Proc. Steklov Inst. Mat., 194:4 (1993), 59–63 | MR
[6] V.I. Burenkov, A. Senouci, T.V. Tararykova, “Equivalent quasi-norm involving differences and moduli of continuity”, Complex Variables and Elliptic Equations, 55 (2010), 759–769 | DOI | MR | Zbl
[7] A.M. Caetano, A. Gogatishvili, B. Opic, Embeddings and the growth envelope of Besov spaces involving only slowly varying smoothness, Preprint, 2010-4-27, Institute of Mathematics, AS CR, Prague | MR | Zbl
[8] A. Gogatishvili, B. Opic, W. Trebels, “Limiting reiteration for real interpolation with slowly varying functions”, Mathematische Nachrichten, 278 (2005), 86–107 | DOI | MR | Zbl
[9] A. Gogatishvili, V.D. Stepanov, “Reduction theorems for weighted integral inequalities on the cone of monotone functions”, Russian Math. Surveys, 68:4 (2013), 597–664 | DOI | MR | Zbl
[10] G.H. Hardy, “Notes on somme points in the integral calculus. LXIV. Further inequalities between integrals”, Messenger of Math., 57 (1927), 12–16 | Zbl
[11] A. Kufner, L. Maligranda, L.-E. Persson, The Hardy inequality. About its history and some related results, Vydavatelsky Servis Publishing House, Pilsen, 2007, 162 pp. | MR | Zbl
[12] A. Kufner, L.-E. Persson, Weighted inequalities of Hardy type, World Scientific, New Jersey–London–Singapore-Hong Kong, 2003, xviii+357 pp. | MR | Zbl
[13] P. Rehak, “Nonlinear differential systems and regularly varying functions”, Workshop on BVP's, Institute of Mathematics, Academy of Sciences of the Czech Republic, Brno, 2014, 1–34
[14] A. Senouci, T.V. Tararykova, “Hardy-type inequality for $0 p 1$”, Evraziiskii Matematicheskii Zhurnal, 2 (2007), 112–116