On commutativity of circularly ordered c-o-stable groups
Eurasian mathematical journal, Tome 9 (2018) no. 4, pp. 91-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

A circularly ordered structure is called c-o-stable in $\lambda$, if for any subset $A$ of cardinality at most $\lambda$ and for any cut $s$ there exist at most $\lambda$ one-types over $A$ that are consistent with $s$. A theory is called c-o-stable if there exists an infinite $\lambda$ such that all its models are c-o-stable in $\lambda$. In the paper, it is proved that any circularly ordered group, whose elementary theory is c-o-stable, is Abelian.
@article{EMJ_2018_9_4_a7,
     author = {V. V. Verbovskiy},
     title = {On commutativity of circularly ordered c-o-stable groups},
     journal = {Eurasian mathematical journal},
     pages = {91--98},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2018_9_4_a7/}
}
TY  - JOUR
AU  - V. V. Verbovskiy
TI  - On commutativity of circularly ordered c-o-stable groups
JO  - Eurasian mathematical journal
PY  - 2018
SP  - 91
EP  - 98
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2018_9_4_a7/
LA  - en
ID  - EMJ_2018_9_4_a7
ER  - 
%0 Journal Article
%A V. V. Verbovskiy
%T On commutativity of circularly ordered c-o-stable groups
%J Eurasian mathematical journal
%D 2018
%P 91-98
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2018_9_4_a7/
%G en
%F EMJ_2018_9_4_a7
V. V. Verbovskiy. On commutativity of circularly ordered c-o-stable groups. Eurasian mathematical journal, Tome 9 (2018) no. 4, pp. 91-98. http://geodesic.mathdoc.fr/item/EMJ_2018_9_4_a7/

[1] B. S. Baizhanov, V. V. Verbovskiy, “O-stable theories”, Algebra and Logic, 50 (2011), 211–225 | DOI

[2] M. Bhattacharjee, H. D. Macpherson, R. G. Moller, P. M. Neumann, Notes on Infinite Permutation Groups, Lecture Notes in Mathematics, 1698, Springer, 1998, 202 pp. | DOI

[3] B. Sh. Kulpeshov, H. D. Macpherson, “Minimality conditions on circularly ordered structures”, Mathematical Logic Quarterly, 51 (2005), 377–399 | DOI

[4] B. Sh. Kulpeshov, V. V. Verbovskiy, “On weakly circularly minimal groups”, Mathematical Logic Quarterly, 61 (2015), 82–90 | DOI

[5] H. D. Macpherson, D. Marker, Ch. Steinhorn, “Weakly o-minimal structures and real closed fields”, Transactions of The American Mathematical Society, 352 (2000), 5435–5483 | DOI

[6] H. D. Macpherson, Ch. Steinhorn, “On variants of o-minimality”, Annals of Pure and Applied Logic, 79 (1996), 165–209 | DOI

[7] S. Swierczkowski, “On cyclically ordered groups”, Fundamenta Mathematicae, 47 (1959), 161–166 | DOI

[8] V. V. Verbovskiy, “O-stable ordered groups”, Siberian Advances in Mathematics, 22 (2012), 50–74 | DOI

[9] V. V. Verbovskiy, “On a classification of theories without the independence property”, Mathematical Logic Quarterly, 61 (2013), 119–124 | DOI