On determinants and permanents of some Toeplitz--Hessenberg matrices whose entries are Jacobsthal numbers
Eurasian mathematical journal, Tome 9 (2018) no. 4, pp. 61-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study some families of Toeplitz–Hessenberg determinants and permanents the entries of which are Jacobsthal numbers. These studies have led us to discover new identities for Jacobsthal numbers.
@article{EMJ_2018_9_4_a3,
     author = {T. Goy},
     title = {On determinants and permanents of some {Toeplitz--Hessenberg} matrices whose entries are {Jacobsthal} numbers},
     journal = {Eurasian mathematical journal},
     pages = {61--67},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2018_9_4_a3/}
}
TY  - JOUR
AU  - T. Goy
TI  - On determinants and permanents of some Toeplitz--Hessenberg matrices whose entries are Jacobsthal numbers
JO  - Eurasian mathematical journal
PY  - 2018
SP  - 61
EP  - 67
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2018_9_4_a3/
LA  - en
ID  - EMJ_2018_9_4_a3
ER  - 
%0 Journal Article
%A T. Goy
%T On determinants and permanents of some Toeplitz--Hessenberg matrices whose entries are Jacobsthal numbers
%J Eurasian mathematical journal
%D 2018
%P 61-67
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2018_9_4_a3/
%G en
%F EMJ_2018_9_4_a3
T. Goy. On determinants and permanents of some Toeplitz--Hessenberg matrices whose entries are Jacobsthal numbers. Eurasian mathematical journal, Tome 9 (2018) no. 4, pp. 61-67. http://geodesic.mathdoc.fr/item/EMJ_2018_9_4_a3/

[1] M. Akbulak, A. Öteleş, “On the sums of Pell and Jacobsthal numbers by matrix method”, Bull. Iranian Math. Soc., 40:4 (2014), 1017–1025

[2] İ. Aktaş, H. Köse, “Hessenberg matrices and the Pell-Lucas and Jacobsthal numbers”, Int. J. Pure Appl. Math., 101:3 (2015), 425–432

[3] G. Cerda-Morales, “Matrix representation of the $q$-Jacobsthal numbers”, Proyecciones, 31:4 (2012), 345–354 | DOI

[4] Z. Čerin, “Sums of squares and products of Jacobsthal numbers”, J. Integer Seq., 10:2 (2007), 07.2.5

[5] M. H. C{\i}lasun, “Generalized multiple counting Jacobsthal sequences of Fermat pseudoprimes”, J. Integer Seq., 19:2 (2016), 16.2.3

[6] C. K. Cook, M. R. Bacon, “Some identities for Jacobsthal and Jacobsthal-Lucas numbers satisfying higher order recurrence relations”, Ann. Math. Informat., 41 (2013), 27–39

[7] A. Daşdemir, “On the Jacobsthal numbers by matrix method”, SDU Journal of Science, 7:1 (2012), 69–76

[8] Ö. Deveci, E. Karaduman, G. Sağlam, “The Jacobsthal sequences infinite groups”, Bull. Iranian Math. Soc., 42:1 (2016), 79–89

[9] G. B. Djordjević, “Some generalizations of the Jacobsthal numbers”, Filomat., 24:2 (2010), 143–151 | DOI

[10] G. B. Djordjević, H. M. Srivastava, “Incomplete generalized Jacobsthal and Jacobsthal–Lucas numbers”, Math. Comput. Model., 42:9–10 (2005), 1049–1056 | DOI

[11] D. D. Frey, J. A. Sellers, “Jacobsthal numbers and alternating sign matrices”, J. Integer Seq., 3:2 (2000), 00.2.3

[12] S. Heubach, “Tiling an m-by-n area with squares of size up to k-by-k ($m\leqslant 5$)”, Congr. Numer., 140 (1999), 43–64

[13] A. F. Horadam, “Jacobsthal and Pell curves”, Fibonacci Quart., 34:1 (1996), 79–83

[14] A. F. Horadam, “Jacobsthal representation numbers”, Fibonacci Quart., 34:1 (1996), 40–54

[15] A. F. Horadam, “Jacobsthal representation polynomials”, Fibonacci Quart., 35:2 (1997), 137–148

[16] D. Jhala, K. Sisodiya, G. P. S. Rathore, “On some identities for k-Jacobsthal numbers”, Int. J. Math. Anal., 7:12 (2013), 551–556 | DOI

[17] D. Jhala, G. P. S. Rathore, K. Sisodiya, “Some properties of k-Jacobsthal numbers with arithmetic indexes”, Turkish J. Anal. Number Theory, 2:4 (2014), 119–124 | DOI

[18] F. Köken, D. Bozkurt, “On the Jacobsthal numbers by matrix methods”, Int. J. Contemp. Math. Sci., 34:3 (2008), 605–614

[19] H.-C. Li, “A proof about the Jacobsthal and Jacobsthal-Lucas sequences”, Far East J. Math. Sci., 2:2 (2012), 605–614

[20] M. Merca, “A note on the determinant of a Toeplitz-Hessenberg matrix”, Spec. Matrices, 1 (2013), 10–16

[21] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, https://oeis.org

[22] Ş. Uygun, “The $(s, t)$-Jacobsthal and $(s, t)$-Jacobsthal Lucas sequences”, Appl. Math. Sci., 9:70 (2015), 3467–3476

[23] Ş. Uygun, H. Eldogan, “k-Jacobsthal and k-Jacobsthal Lucas matrix sequences”, Int. Math. Forum, 11:3 (2016), 145–154 | DOI

[24] F. Y{\i}lmaz, D. Bozkurt, “The generalized order-k Jacobsthal numbers”, Int. J. Contemp. Math. Sci., 34:4 (2013), 1685–1694

[25] F. Y{\i}lmaz, D. Bozkurt, “The adjacency matrix of one type of directed graph and the Jacobsthal numbers and their determinantal representation”, J. Appl. Math., 2012 (2012), 423163

[26] R. Zatorsky, T. Goy, “Parapermanents of triangular matrices and some general theorems on number sequences”, J. Integer Seq., 19:2 (2016), 16.2.2