Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2018_9_4_a3, author = {T. Goy}, title = {On determinants and permanents of some {Toeplitz--Hessenberg} matrices whose entries are {Jacobsthal} numbers}, journal = {Eurasian mathematical journal}, pages = {61--67}, publisher = {mathdoc}, volume = {9}, number = {4}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2018_9_4_a3/} }
TY - JOUR AU - T. Goy TI - On determinants and permanents of some Toeplitz--Hessenberg matrices whose entries are Jacobsthal numbers JO - Eurasian mathematical journal PY - 2018 SP - 61 EP - 67 VL - 9 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2018_9_4_a3/ LA - en ID - EMJ_2018_9_4_a3 ER -
T. Goy. On determinants and permanents of some Toeplitz--Hessenberg matrices whose entries are Jacobsthal numbers. Eurasian mathematical journal, Tome 9 (2018) no. 4, pp. 61-67. http://geodesic.mathdoc.fr/item/EMJ_2018_9_4_a3/
[1] M. Akbulak, A. Öteleş, “On the sums of Pell and Jacobsthal numbers by matrix method”, Bull. Iranian Math. Soc., 40:4 (2014), 1017–1025
[2] İ. Aktaş, H. Köse, “Hessenberg matrices and the Pell-Lucas and Jacobsthal numbers”, Int. J. Pure Appl. Math., 101:3 (2015), 425–432
[3] G. Cerda-Morales, “Matrix representation of the $q$-Jacobsthal numbers”, Proyecciones, 31:4 (2012), 345–354 | DOI
[4] Z. Čerin, “Sums of squares and products of Jacobsthal numbers”, J. Integer Seq., 10:2 (2007), 07.2.5
[5] M. H. C{\i}lasun, “Generalized multiple counting Jacobsthal sequences of Fermat pseudoprimes”, J. Integer Seq., 19:2 (2016), 16.2.3
[6] C. K. Cook, M. R. Bacon, “Some identities for Jacobsthal and Jacobsthal-Lucas numbers satisfying higher order recurrence relations”, Ann. Math. Informat., 41 (2013), 27–39
[7] A. Daşdemir, “On the Jacobsthal numbers by matrix method”, SDU Journal of Science, 7:1 (2012), 69–76
[8] Ö. Deveci, E. Karaduman, G. Sağlam, “The Jacobsthal sequences infinite groups”, Bull. Iranian Math. Soc., 42:1 (2016), 79–89
[9] G. B. Djordjević, “Some generalizations of the Jacobsthal numbers”, Filomat., 24:2 (2010), 143–151 | DOI
[10] G. B. Djordjević, H. M. Srivastava, “Incomplete generalized Jacobsthal and Jacobsthal–Lucas numbers”, Math. Comput. Model., 42:9–10 (2005), 1049–1056 | DOI
[11] D. D. Frey, J. A. Sellers, “Jacobsthal numbers and alternating sign matrices”, J. Integer Seq., 3:2 (2000), 00.2.3
[12] S. Heubach, “Tiling an m-by-n area with squares of size up to k-by-k ($m\leqslant 5$)”, Congr. Numer., 140 (1999), 43–64
[13] A. F. Horadam, “Jacobsthal and Pell curves”, Fibonacci Quart., 34:1 (1996), 79–83
[14] A. F. Horadam, “Jacobsthal representation numbers”, Fibonacci Quart., 34:1 (1996), 40–54
[15] A. F. Horadam, “Jacobsthal representation polynomials”, Fibonacci Quart., 35:2 (1997), 137–148
[16] D. Jhala, K. Sisodiya, G. P. S. Rathore, “On some identities for k-Jacobsthal numbers”, Int. J. Math. Anal., 7:12 (2013), 551–556 | DOI
[17] D. Jhala, G. P. S. Rathore, K. Sisodiya, “Some properties of k-Jacobsthal numbers with arithmetic indexes”, Turkish J. Anal. Number Theory, 2:4 (2014), 119–124 | DOI
[18] F. Köken, D. Bozkurt, “On the Jacobsthal numbers by matrix methods”, Int. J. Contemp. Math. Sci., 34:3 (2008), 605–614
[19] H.-C. Li, “A proof about the Jacobsthal and Jacobsthal-Lucas sequences”, Far East J. Math. Sci., 2:2 (2012), 605–614
[20] M. Merca, “A note on the determinant of a Toeplitz-Hessenberg matrix”, Spec. Matrices, 1 (2013), 10–16
[21] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, https://oeis.org
[22] Ş. Uygun, “The $(s, t)$-Jacobsthal and $(s, t)$-Jacobsthal Lucas sequences”, Appl. Math. Sci., 9:70 (2015), 3467–3476
[23] Ş. Uygun, H. Eldogan, “k-Jacobsthal and k-Jacobsthal Lucas matrix sequences”, Int. Math. Forum, 11:3 (2016), 145–154 | DOI
[24] F. Y{\i}lmaz, D. Bozkurt, “The generalized order-k Jacobsthal numbers”, Int. J. Contemp. Math. Sci., 34:4 (2013), 1685–1694
[25] F. Y{\i}lmaz, D. Bozkurt, “The adjacency matrix of one type of directed graph and the Jacobsthal numbers and their determinantal representation”, J. Appl. Math., 2012 (2012), 423163
[26] R. Zatorsky, T. Goy, “Parapermanents of triangular matrices and some general theorems on number sequences”, J. Integer Seq., 19:2 (2016), 16.2.2