On determinants and permanents of some Toeplitz–Hessenberg matrices whose entries are Jacobsthal numbers
Eurasian mathematical journal, Tome 9 (2018) no. 4, pp. 61-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study some families of Toeplitz–Hessenberg determinants and permanents the entries of which are Jacobsthal numbers. These studies have led us to discover new identities for Jacobsthal numbers.
@article{EMJ_2018_9_4_a3,
     author = {T. Goy},
     title = {On determinants and permanents of some {Toeplitz{\textendash}Hessenberg} matrices whose entries are {Jacobsthal} numbers},
     journal = {Eurasian mathematical journal},
     pages = {61--67},
     year = {2018},
     volume = {9},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2018_9_4_a3/}
}
TY  - JOUR
AU  - T. Goy
TI  - On determinants and permanents of some Toeplitz–Hessenberg matrices whose entries are Jacobsthal numbers
JO  - Eurasian mathematical journal
PY  - 2018
SP  - 61
EP  - 67
VL  - 9
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/EMJ_2018_9_4_a3/
LA  - en
ID  - EMJ_2018_9_4_a3
ER  - 
%0 Journal Article
%A T. Goy
%T On determinants and permanents of some Toeplitz–Hessenberg matrices whose entries are Jacobsthal numbers
%J Eurasian mathematical journal
%D 2018
%P 61-67
%V 9
%N 4
%U http://geodesic.mathdoc.fr/item/EMJ_2018_9_4_a3/
%G en
%F EMJ_2018_9_4_a3
T. Goy. On determinants and permanents of some Toeplitz–Hessenberg matrices whose entries are Jacobsthal numbers. Eurasian mathematical journal, Tome 9 (2018) no. 4, pp. 61-67. http://geodesic.mathdoc.fr/item/EMJ_2018_9_4_a3/

[1] M. Akbulak, A. Öteleş, “On the sums of Pell and Jacobsthal numbers by matrix method”, Bull. Iranian Math. Soc., 40:4 (2014), 1017–1025

[2] İ. Aktaş, H. Köse, “Hessenberg matrices and the Pell-Lucas and Jacobsthal numbers”, Int. J. Pure Appl. Math., 101:3 (2015), 425–432

[3] G. Cerda-Morales, “Matrix representation of the $q$-Jacobsthal numbers”, Proyecciones, 31:4 (2012), 345–354 | DOI

[4] Z. Čerin, “Sums of squares and products of Jacobsthal numbers”, J. Integer Seq., 10:2 (2007), 07.2.5

[5] M. H. C{\i}lasun, “Generalized multiple counting Jacobsthal sequences of Fermat pseudoprimes”, J. Integer Seq., 19:2 (2016), 16.2.3

[6] C. K. Cook, M. R. Bacon, “Some identities for Jacobsthal and Jacobsthal-Lucas numbers satisfying higher order recurrence relations”, Ann. Math. Informat., 41 (2013), 27–39

[7] A. Daşdemir, “On the Jacobsthal numbers by matrix method”, SDU Journal of Science, 7:1 (2012), 69–76

[8] Ö. Deveci, E. Karaduman, G. Sağlam, “The Jacobsthal sequences infinite groups”, Bull. Iranian Math. Soc., 42:1 (2016), 79–89

[9] G. B. Djordjević, “Some generalizations of the Jacobsthal numbers”, Filomat., 24:2 (2010), 143–151 | DOI

[10] G. B. Djordjević, H. M. Srivastava, “Incomplete generalized Jacobsthal and Jacobsthal–Lucas numbers”, Math. Comput. Model., 42:9–10 (2005), 1049–1056 | DOI

[11] D. D. Frey, J. A. Sellers, “Jacobsthal numbers and alternating sign matrices”, J. Integer Seq., 3:2 (2000), 00.2.3

[12] S. Heubach, “Tiling an m-by-n area with squares of size up to k-by-k ($m\leqslant 5$)”, Congr. Numer., 140 (1999), 43–64

[13] A. F. Horadam, “Jacobsthal and Pell curves”, Fibonacci Quart., 34:1 (1996), 79–83

[14] A. F. Horadam, “Jacobsthal representation numbers”, Fibonacci Quart., 34:1 (1996), 40–54

[15] A. F. Horadam, “Jacobsthal representation polynomials”, Fibonacci Quart., 35:2 (1997), 137–148

[16] D. Jhala, K. Sisodiya, G. P. S. Rathore, “On some identities for k-Jacobsthal numbers”, Int. J. Math. Anal., 7:12 (2013), 551–556 | DOI

[17] D. Jhala, G. P. S. Rathore, K. Sisodiya, “Some properties of k-Jacobsthal numbers with arithmetic indexes”, Turkish J. Anal. Number Theory, 2:4 (2014), 119–124 | DOI

[18] F. Köken, D. Bozkurt, “On the Jacobsthal numbers by matrix methods”, Int. J. Contemp. Math. Sci., 34:3 (2008), 605–614

[19] H.-C. Li, “A proof about the Jacobsthal and Jacobsthal-Lucas sequences”, Far East J. Math. Sci., 2:2 (2012), 605–614

[20] M. Merca, “A note on the determinant of a Toeplitz-Hessenberg matrix”, Spec. Matrices, 1 (2013), 10–16

[21] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, https://oeis.org

[22] Ş. Uygun, “The $(s, t)$-Jacobsthal and $(s, t)$-Jacobsthal Lucas sequences”, Appl. Math. Sci., 9:70 (2015), 3467–3476

[23] Ş. Uygun, H. Eldogan, “k-Jacobsthal and k-Jacobsthal Lucas matrix sequences”, Int. Math. Forum, 11:3 (2016), 145–154 | DOI

[24] F. Y{\i}lmaz, D. Bozkurt, “The generalized order-k Jacobsthal numbers”, Int. J. Contemp. Math. Sci., 34:4 (2013), 1685–1694

[25] F. Y{\i}lmaz, D. Bozkurt, “The adjacency matrix of one type of directed graph and the Jacobsthal numbers and their determinantal representation”, J. Appl. Math., 2012 (2012), 423163

[26] R. Zatorsky, T. Goy, “Parapermanents of triangular matrices and some general theorems on number sequences”, J. Integer Seq., 19:2 (2016), 16.2.2