On the Dirichlet problem for the Laplace equation with the boundary value in Morrey space
Eurasian mathematical journal, Tome 9 (2018) no. 4, pp. 9-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

The class of Poisson–Morrey harmonic functions in the unit circle is introduced, some properties of functions of this class are studied. Nontangential maximal function is considered and it is estimated from above via maximum operator, and the proof is carried out for the Poisson–Stieltjes integral, when the density belongs to the corresponding Morrey–Lebesgue space. The obtained results are applied to solving of the Dirichlet problem for the Laplace equation with the boundary value in Morrey–Lebesgue space.
@article{EMJ_2018_9_4_a1,
     author = {N. R. Ahmedzade and Z. A. Kasumov},
     title = {On the {Dirichlet} problem for the {Laplace} equation with the boundary value in {Morrey} space},
     journal = {Eurasian mathematical journal},
     pages = {9--21},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2018_9_4_a1/}
}
TY  - JOUR
AU  - N. R. Ahmedzade
AU  - Z. A. Kasumov
TI  - On the Dirichlet problem for the Laplace equation with the boundary value in Morrey space
JO  - Eurasian mathematical journal
PY  - 2018
SP  - 9
EP  - 21
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2018_9_4_a1/
LA  - en
ID  - EMJ_2018_9_4_a1
ER  - 
%0 Journal Article
%A N. R. Ahmedzade
%A Z. A. Kasumov
%T On the Dirichlet problem for the Laplace equation with the boundary value in Morrey space
%J Eurasian mathematical journal
%D 2018
%P 9-21
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2018_9_4_a1/
%G en
%F EMJ_2018_9_4_a1
N. R. Ahmedzade; Z. A. Kasumov. On the Dirichlet problem for the Laplace equation with the boundary value in Morrey space. Eurasian mathematical journal, Tome 9 (2018) no. 4, pp. 9-21. http://geodesic.mathdoc.fr/item/EMJ_2018_9_4_a1/

[1] D. R. Adams, Morrey spaces, Lecture Notes in Applied and Numerical Harmonic Analysis, Birkhäuser, 2014

[2] H. Arai, T. Mizuhar, “Morrey spaces on spaces of homogeneous type and estimates for $\square_b$ and the Cauchy-Szego projection”, Math. Nachr., 185:1 (1997), 5–20 | DOI

[3] B. T. Bilalov, T. B. Gasymov, A. A. Quliyeva, “On solvability of Riemann boundary value problem in Morrey–Hardy classes”, Turk. J. Math., 40 (2016), 1085–1101 | DOI

[4] B. T. Bilalov, F. I. Mamedov, R. A. Bandaliyev, “On classes of harmonic functions with variable summability”, Reports of NAS of Az., 5:LXIII (2007), 16–21

[5] B. T. Bilalov, A. A. Quliyeva, “On basicity of exponential systems in Morrey-type spaces”, International Journal of Mathematics, 25:6 (2014), 1450054, 10 pp. | DOI

[6] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces I”, Eurasian Math. J., 3:3 (2012), 11–32

[7] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces II”, Eurasian Math. J., 4:1 (2013), 21–45

[8] Y. Chen, “Regularity of the solution to the Dirichlet problem in Morrey space”, J. Partial Differ. Eqs., 15 (2002), 37–46

[9] F. Chiarenza, M. Frasca, “Morrey spaces and Hardy–Littlewood maximal function”, Rend. Math. Appl., 7 (1987), 273–279

[10] I. I. Daniluk, Nonregular boundary value problems on the plane, Nauka, M., 1975

[11] D. Fan, S. Lu, D. Yang, “Boundedness of operators in Morrey spaces on homogeneous spaces and its applications”, Acta Math. Sinica (N.S.), 14 (1998), 625–634

[12] G. D. Fario, M. A. Ragusa, “Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients”, Journal of Functional Analysis, 112 (1993), 241–256 | DOI

[13] J. Garnett, Bounded analytic functions, Mir, M., 1984 (in Russian)

[14] Y. Giga, T. Miyakawa, “Navier-Stokes flow in $R_3$ with measures as initial vorticity and Morrey spaces”, Comm. in Partial Differential Equations, 14 (1989), 577–618 | DOI

[15] V. S. Guliyev, “Generalized weighted Morrey spaces and higher order commutators of sublinear operators”, Eurasian Math. J., 3:3 (2012), 33–61

[16] Y. Hu, L. Zhang, Y. Wang, “Multilinear singular integral operators on generalized weighted Morrey spaces”, Journal of Function spaces, 2014 (2014), 12 pp.

[17] D. M. Israfilov, N. P. Tozman, “Approximation by polynomials in Morrey–Smirnov classes”, East J. Approx., 14:3 (2008), 255–269

[18] D. M. Israfilov, N. P. Tozman, “Approximation in Morrey–Smirnov classes”, Azerbaijan J. Mathematics, 1:1 (2011), 99–113

[19] V. Kokilashvili, A. Meskhi, “Boundedness of maximal and singular operators in Morrey spaces with variable exponent”, Govern. College Univ. Lahore, 72 (2008), 1–11

[20] Y. Komori, S. Shirai, “Weighted Morrey spaces and singular integral operators”, Math. Nachr., 289 (2009), 219–231 | DOI

[21] P. Koosis, Introduction to the theory of spaces, Mir, M., 1984

[22] N. X. Ky, “On approximation by trigonometric polynomials in $L_pu$-spaces”, Studia Sci. Math. Hungar., 28 (1993), 183–188

[23] P. G. Lemarie-Rieusset, “Some remarks on the Navier-Stokes equations in $R_3$”, J. Math. Phys., 39 (1988), 4108–4118 | DOI

[24] P. G. Lemarie-Rieusset, “The role of Morrey spaces in the study of Navier–Stokes and Euler equations”, Eurasian Math. J., 3:3 (2012), 62–93

[25] Y. Lu, D. Yang, W. Yuan, “Interpolation of Morrey spaces on metric measure spaces”, Canad. Math. Bull., 57 (2014), 598–608 | DOI

[26] A. L. Mazzucato, “Decomposition of Besov–Morrey spaces”, Harmonic Analysis at Mount Holyoke, American Mathematical Society Contemporary Mathematics, 320, 2003, 279–294 | DOI

[27] C. B. Morrey, “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43 (1938), 207–226 | DOI

[28] E. Nakai, “The Companato, Morrey and Holder spaces in spaces of homogeneous type”, Studia Math., 176 (2006), 1–19 | DOI

[29] D. K. Palagachev, L. G. Softova, “Singular integral operators, Morrey spaces and fine regularity of solutions to PDE's”, Potential Anal., 20 (2004), 237–263 | DOI

[30] J. Peetre, “On the theory of spaces”, J. Funct. Anal., 4 (1964), 71–87 | DOI

[31] H. Rafeiro, N. Samko, S. Samko, “Morrey-Campanato spaces: an overview”, Oper. Theory Adv. Appl., 228, Birkhäuser/Springer, Basel AG, 2013, 293–323

[32] M. A. Ragusa, “Operators in Morrey-type spaces and applications”, Eurasian Math. J., 3:3 (2012), 94–109

[33] N. Samko, “Weight Hardy and singular operators in Morrey spaces”, J. Math. Anal. Appl., 35:1 (2009), 183–188

[34] W. Sickel, “Smoothness spaces related to Morrey spaces–a survey. I”, Eurasian Math. J., 3:3 (2012), 110–149

[35] W. Sickel, “Smoothness spaces related to Morrey spaces–a survey. II”, Eurasian Math. J., 4:1 (2013), 82–124

[36] E. Stein, Singular integrals and differential properties of functions, Mir, M., 1973

[37] I. Takeshi, “Weighted inequalities on Morrey spaces for linear and multilinear fractional integrals with homogeneous kernels”, Taiwanese Journal of Math., 18 (2013), 147–185

[38] I. Takeshi, S. Enji, S. Yoshihiro, T. Hitoshi, “Weighted norm inequalities for multilinear fractional operators on Morrey spaces”, Studia Math., 205 (2011), 139–170 | DOI

[39] F. Y. Xiao, Z. Xu SH., “Estimates of singular integrals and multilinear commutators in weighted Morrey spaces”, Journal of Inequalities and Appl., 2012:32 (2012)

[40] D. Yang, “Some function spaces relative to Morrey-Companato spaces on metric spaces”, Nagoya Math., 177 (2005), 1–29 | DOI

[41] W. Yuan, D. Haroske, S. Moura, L. Skrzypczak, D. Yang, “Limiting embeddings in smoothness Morrey spaces, continuity envelopes and applications”, J. Approx. Theory, 192 (2015), 306–335 | DOI

[42] W. Yuan, W. Sickel, D. Yang, “Interpolation of Morrey-Campanato and related smoothness spaces”, Sci. China Math., 58 (2015), 1835–1908 | DOI

[43] W. Yuan, W. Sickel, D. Yang, Morrey and Campanato meet Besov, Lizorkin and Triebel, Lecture Notes in Mathematics, 2005

[44] C. T. Zorko, “Morrey space”, Proc. Amer. Math. Soc., 98:4 (1986), 586–592 | DOI