On the Dirichlet problem for the Laplace equation with the boundary value in Morrey space
Eurasian mathematical journal, Tome 9 (2018) no. 4, pp. 9-21

Voir la notice de l'article provenant de la source Math-Net.Ru

The class of Poisson–Morrey harmonic functions in the unit circle is introduced, some properties of functions of this class are studied. Nontangential maximal function is considered and it is estimated from above via maximum operator, and the proof is carried out for the Poisson–Stieltjes integral, when the density belongs to the corresponding Morrey–Lebesgue space. The obtained results are applied to solving of the Dirichlet problem for the Laplace equation with the boundary value in Morrey–Lebesgue space.
@article{EMJ_2018_9_4_a1,
     author = {N. R. Ahmedzade and Z. A. Kasumov},
     title = {On the {Dirichlet} problem for the {Laplace} equation with the boundary value in {Morrey} space},
     journal = {Eurasian mathematical journal},
     pages = {9--21},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2018_9_4_a1/}
}
TY  - JOUR
AU  - N. R. Ahmedzade
AU  - Z. A. Kasumov
TI  - On the Dirichlet problem for the Laplace equation with the boundary value in Morrey space
JO  - Eurasian mathematical journal
PY  - 2018
SP  - 9
EP  - 21
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2018_9_4_a1/
LA  - en
ID  - EMJ_2018_9_4_a1
ER  - 
%0 Journal Article
%A N. R. Ahmedzade
%A Z. A. Kasumov
%T On the Dirichlet problem for the Laplace equation with the boundary value in Morrey space
%J Eurasian mathematical journal
%D 2018
%P 9-21
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2018_9_4_a1/
%G en
%F EMJ_2018_9_4_a1
N. R. Ahmedzade; Z. A. Kasumov. On the Dirichlet problem for the Laplace equation with the boundary value in Morrey space. Eurasian mathematical journal, Tome 9 (2018) no. 4, pp. 9-21. http://geodesic.mathdoc.fr/item/EMJ_2018_9_4_a1/