Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2018_9_3_a6, author = {V. I. Vlasov}, title = {Hardy spaces, approximation issues and boundary value problems}, journal = {Eurasian mathematical journal}, pages = {85--94}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2018_9_3_a6/} }
V. I. Vlasov. Hardy spaces, approximation issues and boundary value problems. Eurasian mathematical journal, Tome 9 (2018) no. 3, pp. 85-94. http://geodesic.mathdoc.fr/item/EMJ_2018_9_3_a6/
[1] D.L. Burgholder, R.F. Gundy, M.L. Silverstein, “A maximal function characterisation of the class $H_p$”, Trans. Amer. Math. Soc., 157 (1971), 137–153 | MR
[2] G. Cimmino, “Nuovo tipo di condizione al contorno e nuovo metodo di trattazione per il problema generalizzato di Dirichlet”, Rend. Circolo Math. Palermo, 61:2 (1937), 117–221
[3] J.B. Garnett, Bounded analytic functions, Academic Press, New York, 1981 | MR | Zbl
[4] J. Garsia-Cuerva, Weighted $H^p$-spaces, Rospr. Mat., 162, 1985, 62 pp. | MR
[5] C. Gattegno, A. Ostrowski, Representation conforme a' la frontiere; domaines particuliers, Mem. or Sc. Math., CX, Paris, 1949 | MR | Zbl
[6] G.M. Goluzin, Geometric theory of functions of a complex variable, Amer. Math. Soc., Providence, 1969 | MR | Zbl
[7] A.K. Gushchin, “The Dirichlet problem for a second-order elliptic equation with an $L_p$ boundary function”, Matem. Sb., 203:1 (2012), 1–27 (in Russian) | DOI | MR | Zbl
[8] A.K. Gushchin, V.P. Mikhailov, “On the existence of boundary values of solutions of en elliptic equation”, Matem. Sb., 73:1 (1991), 171–194 (in Russian) | DOI | MR
[9] B.E.J. Dahlberg, “Harmonic functions in Lipshitz domains”, Harm. Anal. Euclidean Spaces (Williamstone, Mass., 1978), v. 1, Proc. Symp. Pure Math., Amer. Math. Soc., Providence R. I., 1979, 313–332 | DOI | MR
[10] B.E. Dahlberg, C.E. Kenig, “Hardy spaces and the Neumann problem in $L_p$ for Laplace's equation in Lipshitz domains”, Ann. of Math., 125:3 (1987), 437–455 | DOI | MR
[11] P.L. Duren, Theory of $H^p$ spaces, Academic Press, N.Y.–London, 1970 | MR
[12] D.S. Jerison, C.E. Kenig, “The Neuman problem om Lipschitz domains”, Bull. (New Series) American Math. Soc., 4:2 (1981), 201–207 | DOI | MR
[13] M.V. Keldysh, M.A. Lavrentieff, “Sur la representation conforme des domaines limites par les curves rectifiables”, Ann. sci. Ecole norm. supér., 54:1 (1937), 1–38 | MR | Zbl
[14] C.E. Kenig, “Weighted $H^p$ spaces on Lipshitz domains”, Amer. J. Math., 102:1 (1980), 129–163 | DOI | MR | Zbl
[15] C.E. Kenig, “Recente progress on boundary–value problems on Lipshitz domains”, Proc. Symp. Pure Math. Amer. Soc., 43 (1985), 185–205 | MR
[16] E. Magenes, G. Stampacchia, “II problemi al contorno per le equazioni differeziali di tipo ellittico”, Ann. Scuola normale super. Pisa, 12:3 (1958), 247–357 | MR
[17] A.I. Markushevich, Theory of functions of a complex variable, Translated and edited by Richard A. Silverman, v. III, Second English edition, Chelsea Publishing Co., New York, 1977 | MR | Zbl
[18] V.G. Maz'ya, “The degenerate problem with an oblique derivative”, Matem. Sb. (N.S.), 87(129):3 (1972), 417–454 (in Russian) | MR | Zbl
[19] C. Miranda, Partial differential equations of elliptic type, Springer, Berlin–Heidelberg–New York, 1970 | MR | Zbl
[20] I.I. Privalov, The boundary properties of analitic functions, Gostehizdat, M.–L., 1950 (in Russian) | MR
[21] M. Riesz, “Sur les functions conjugees”, Math. Zeitshr., 27:2 (1927), 218–244 | MR | Zbl
[22] F. Riesz, “Uber die Randwerte einer analytischen Funcktion”, Math. Zeitshr., 18 (1923), 87–96 | DOI | MR
[23] Differ. Equat., 38:6 (2002), 855–864 | DOI | MR | Zbl
[24] Russian Acad. Sci. Dokl. Math., 78:2 (2007) | MR | Zbl
[25] Russian Acad. Sci. Dokl. Math., 418:2 (2008), 162–167 | MR | MR | Zbl
[26] E.M. Stein, G. Weiss, “On the theory of harmonic functions of several variables. The theory of $H^p$-spaces”, Acta Math., 103 (1960), 25–62 | DOI | MR | Zbl
[27] V.I. Vlasov, Boundary value problems in domains with curvilinear boundary, D. Sc. thesis, Computing Center of the Russ. Acad. Sci., M., 1990 (in Russian) | MR
[28] Russian Acad. Sci. Dokl. Math., 47:1 (1993), 57–61 | MR | Zbl
[29] S. Warschawski, “Über das Ranwerhalten der Ableitung der Abbildungsfunction bei conformer Abbildung”, Math. Zeitshr., 35:3–4 (1932), 321–456 | DOI | MR