Efficient numerical methods of Aitken type and their dynamics
Eurasian mathematical journal, Tome 9 (2018) no. 3, pp. 58-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we derive some general Aitken type methods. These methods involve arbitrary methods of orders $p$ and $q$ which enable us to construct the method of any desired order. Further, it is shown that these methods can be combined with generalized secant method and as result, in the limiting case, the efficiency can be increased to $2$. We also discuss the stability of the iterative method with the help of basins of attraction in the complex plane. Some numerical examples are provided in support of the theoretical results.
@article{EMJ_2018_9_3_a4,
     author = {P. Jain and P. B. Chand and K. Sethi},
     title = {Efficient numerical methods of {Aitken} type and their dynamics},
     journal = {Eurasian mathematical journal},
     pages = {58--72},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2018_9_3_a4/}
}
TY  - JOUR
AU  - P. Jain
AU  - P. B. Chand
AU  - K. Sethi
TI  - Efficient numerical methods of Aitken type and their dynamics
JO  - Eurasian mathematical journal
PY  - 2018
SP  - 58
EP  - 72
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2018_9_3_a4/
LA  - en
ID  - EMJ_2018_9_3_a4
ER  - 
%0 Journal Article
%A P. Jain
%A P. B. Chand
%A K. Sethi
%T Efficient numerical methods of Aitken type and their dynamics
%J Eurasian mathematical journal
%D 2018
%P 58-72
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2018_9_3_a4/
%G en
%F EMJ_2018_9_3_a4
P. Jain; P. B. Chand; K. Sethi. Efficient numerical methods of Aitken type and their dynamics. Eurasian mathematical journal, Tome 9 (2018) no. 3, pp. 58-72. http://geodesic.mathdoc.fr/item/EMJ_2018_9_3_a4/

[1] A.F. Beardon, Iteration of rational functions, Springer-Verlag, New York, 1991 | MR | Zbl

[2] P. Blanchard, “The dynamics of Newton's method”, Proc. Sympos. Appl. Math., 49 (1994), 139–154 | DOI | MR | Zbl

[3] F. Chicharro, A. Cordero, J.M. Gutierrez, J.R. Torregrosa, “Complex dynamics of derivative-free methods for nonlinear equations”, Appl. Math. Comp., 219 (2013), 7023–7035 | DOI | MR | Zbl

[4] A. Cordero, J.L. Heuso, E. Martinez, J.R. Torregrosa, “Steffensen type methods for solving nonlinear equations”, J. Comp. Appl. Math., 236 (2012), 3058–3064 | DOI | MR | Zbl

[5] R.L. Devaney, An introduction to chaotic dynamical systems, Addison-Wesley Publishing Company, New York, 1989 | MR | Zbl

[6] T. Kogan, L. Sapir, A. Sapir, “A nonstationary iterative second-order method for solving nonlinear equations”, Appl. Math. Comp., 188 (2007), 75–82 | DOI | MR | Zbl

[7] T. Kogan, L. Sapir, A. Sapir, “The Fibonacci family of iterative processes for solving nonlinear equations”, Appl. Num. Math., 110 (2016), 148–158 | DOI | MR | Zbl

[8] B. Neta, C. Chun, “Basins of attractions for several methods to find the simple roots of nonlinear equations”, Appl. Math. and Comp., 218 (2012), 10548–10556 | DOI | MR | Zbl

[9] I. Păvăloiu, E. Cătinaş, “On an Aitken-Newton type method”, Numer. Algor., 62 (2013), 253–260 | DOI | MR

[10] M.S. Petkovic, B. Neta, L.D. Petcovic, J. Dzflnic, Multipoint Methods for Solving Nonlinear Equations, Elsevier, Waltham, MA, 2013 | MR | Zbl

[11] F. Soleimani, F. Soleymani, S. Shateyi, “Some iterative methods free from derivatives and their basin of attraction for nonlinear equations”, Discrete Dyn. Nat. Soc., 2013, 301718, 10 pp. | MR | Zbl

[12] J.L. Varona, “Graphic and numerical comparison between iterative methods”, Math. Intell., 24 (2002), 37–46 | DOI | MR | Zbl

[13] E.R. Vrscay, W.J. Gilbert, “Extraneous fixed points, basin boundaries and chaotic dynamics for Schroder and Konig rational iteration functions”, Numer. Math., 52 (1988), 1–16 | DOI | MR | Zbl