Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2018_9_3_a4, author = {P. Jain and P. B. Chand and K. Sethi}, title = {Efficient numerical methods of {Aitken} type and their dynamics}, journal = {Eurasian mathematical journal}, pages = {58--72}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2018_9_3_a4/} }
P. Jain; P. B. Chand; K. Sethi. Efficient numerical methods of Aitken type and their dynamics. Eurasian mathematical journal, Tome 9 (2018) no. 3, pp. 58-72. http://geodesic.mathdoc.fr/item/EMJ_2018_9_3_a4/
[1] A.F. Beardon, Iteration of rational functions, Springer-Verlag, New York, 1991 | MR | Zbl
[2] P. Blanchard, “The dynamics of Newton's method”, Proc. Sympos. Appl. Math., 49 (1994), 139–154 | DOI | MR | Zbl
[3] F. Chicharro, A. Cordero, J.M. Gutierrez, J.R. Torregrosa, “Complex dynamics of derivative-free methods for nonlinear equations”, Appl. Math. Comp., 219 (2013), 7023–7035 | DOI | MR | Zbl
[4] A. Cordero, J.L. Heuso, E. Martinez, J.R. Torregrosa, “Steffensen type methods for solving nonlinear equations”, J. Comp. Appl. Math., 236 (2012), 3058–3064 | DOI | MR | Zbl
[5] R.L. Devaney, An introduction to chaotic dynamical systems, Addison-Wesley Publishing Company, New York, 1989 | MR | Zbl
[6] T. Kogan, L. Sapir, A. Sapir, “A nonstationary iterative second-order method for solving nonlinear equations”, Appl. Math. Comp., 188 (2007), 75–82 | DOI | MR | Zbl
[7] T. Kogan, L. Sapir, A. Sapir, “The Fibonacci family of iterative processes for solving nonlinear equations”, Appl. Num. Math., 110 (2016), 148–158 | DOI | MR | Zbl
[8] B. Neta, C. Chun, “Basins of attractions for several methods to find the simple roots of nonlinear equations”, Appl. Math. and Comp., 218 (2012), 10548–10556 | DOI | MR | Zbl
[9] I. Păvăloiu, E. Cătinaş, “On an Aitken-Newton type method”, Numer. Algor., 62 (2013), 253–260 | DOI | MR
[10] M.S. Petkovic, B. Neta, L.D. Petcovic, J. Dzflnic, Multipoint Methods for Solving Nonlinear Equations, Elsevier, Waltham, MA, 2013 | MR | Zbl
[11] F. Soleimani, F. Soleymani, S. Shateyi, “Some iterative methods free from derivatives and their basin of attraction for nonlinear equations”, Discrete Dyn. Nat. Soc., 2013, 301718, 10 pp. | MR | Zbl
[12] J.L. Varona, “Graphic and numerical comparison between iterative methods”, Math. Intell., 24 (2002), 37–46 | DOI | MR | Zbl
[13] E.R. Vrscay, W.J. Gilbert, “Extraneous fixed points, basin boundaries and chaotic dynamics for Schroder and Konig rational iteration functions”, Numer. Math., 52 (1988), 1–16 | DOI | MR | Zbl