Discreteness and estimates of spectrum of a first order difference operator
Eurasian mathematical journal, Tome 9 (2018) no. 2, pp. 89-94

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigated a minimal closed in the space $l_2$ first order nonsymmetric difference operator $L$. The matrix of zero order coefficients of $L$ may be an unbounded operator. The study of $L$ is motivated by applications to stochastic processes and stochastic differential equations. We obtained compactness conditions and exact with respect to the order two-sided estimates for $s$-numbers of the resolvent of $L$. Note that these estimates for $s$-numbers do not depend on the oscillations of the coefficients of $L$, in contrast to the case of a differential operator.
@article{EMJ_2018_9_2_a9,
     author = {K. N. Ospanov},
     title = {Discreteness and estimates of spectrum of a first order difference operator},
     journal = {Eurasian mathematical journal},
     pages = {89--94},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a9/}
}
TY  - JOUR
AU  - K. N. Ospanov
TI  - Discreteness and estimates of spectrum of a first order difference operator
JO  - Eurasian mathematical journal
PY  - 2018
SP  - 89
EP  - 94
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a9/
LA  - en
ID  - EMJ_2018_9_2_a9
ER  - 
%0 Journal Article
%A K. N. Ospanov
%T Discreteness and estimates of spectrum of a first order difference operator
%J Eurasian mathematical journal
%D 2018
%P 89-94
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a9/
%G en
%F EMJ_2018_9_2_a9
K. N. Ospanov. Discreteness and estimates of spectrum of a first order difference operator. Eurasian mathematical journal, Tome 9 (2018) no. 2, pp. 89-94. http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a9/