Discreteness and estimates of spectrum of a first order difference operator
Eurasian mathematical journal, Tome 9 (2018) no. 2, pp. 89-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigated a minimal closed in the space $l_2$ first order nonsymmetric difference operator $L$. The matrix of zero order coefficients of $L$ may be an unbounded operator. The study of $L$ is motivated by applications to stochastic processes and stochastic differential equations. We obtained compactness conditions and exact with respect to the order two-sided estimates for $s$-numbers of the resolvent of $L$. Note that these estimates for $s$-numbers do not depend on the oscillations of the coefficients of $L$, in contrast to the case of a differential operator.
@article{EMJ_2018_9_2_a9,
     author = {K. N. Ospanov},
     title = {Discreteness and estimates of spectrum of a first order difference operator},
     journal = {Eurasian mathematical journal},
     pages = {89--94},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a9/}
}
TY  - JOUR
AU  - K. N. Ospanov
TI  - Discreteness and estimates of spectrum of a first order difference operator
JO  - Eurasian mathematical journal
PY  - 2018
SP  - 89
EP  - 94
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a9/
LA  - en
ID  - EMJ_2018_9_2_a9
ER  - 
%0 Journal Article
%A K. N. Ospanov
%T Discreteness and estimates of spectrum of a first order difference operator
%J Eurasian mathematical journal
%D 2018
%P 89-94
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a9/
%G en
%F EMJ_2018_9_2_a9
K. N. Ospanov. Discreteness and estimates of spectrum of a first order difference operator. Eurasian mathematical journal, Tome 9 (2018) no. 2, pp. 89-94. http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a9/

[1] M.Sh. Birman, B.S. Pavlov, “On the complete contiunity of sertain embedding operators”, Vestn. Leningr. Univ. Ser. Mat., Mech., Astr., 1 (1961), 61–74 (in Russian) | MR | Zbl

[2] V.I. Bogachev, N.V. Krylov, M. Rockner, S.V. Shaposhnikov, Fokker–Planck–Kolmogorov equations, Amer. Math. Soc., Providence, Rhode Island, 2015 | MR | Zbl

[3] W.N. Eweritt, M. Giertz, “Some properties of the domains of certain differential operators”, Proc. London Math. Soc., 3 (1971), 301–324 | DOI | MR

[4] W.N. Eweritt, M. Giertz, J. Weidmann, “Some remarks on a separation and limit-point criterion of second order ordinary differential expressions”, Math. Ann., 200 (1973), 335–346 | DOI | MR

[5] Mathematics of the USSR-Izvestiya, 7:2 (1973), 357–387 | DOI | MR | Zbl

[6] A.M. Molchanov, “On conditions for discreteness of the spectrum of selfadjoint second order differential equations”, Trudy Moscow. Mat. Obsh., 2, 1953, 169–199 (in Russian) | MR | Zbl

[7] B. Muslimov, M. Otelbaev, “Estimates of the smallest eigenvalue of one class of matrices corresponding to the Sturm–Liouville difference equation”, Comp. Math. and Math. Phys., 21:6 (1981), 1430–1434 | MR

[8] K.T. Mynbaev, M. Otelbaev, Weighted functional spaces and a spectrum of the differential operators, Nauka, M., 1988 (in Russian) | MR

[9] K. Ospanov, “Coercive estimates for degenerate elliptic system of equations with spectral applications”, Appl. Math. Lett., 24 (2011), 1594–1598 | DOI | MR | Zbl

[10] K.N. Ospanov, “$L_1$-maximal regularity for quasilinear second order differential equation with damped term”, Elect. J. Qual. Th. Dif. Equat., 39 (2015), 1–9 | MR

[11] K.N. Ospanov, A. Zulkhazhav, “Coercive solvability of degenerate system of second order difference equations”, AIP Conference Proceedings, 1759, 2016, 020082 | DOI

[12] M. Otelbaev, “A criterion for the discreteness of the spectrum of a degenerate operator and some imbedding theorems”, Dif. Equat., 13:1 (1977), 111–120 | MR | Zbl

[13] Mathematical Notes, 25:3 (1979), 216–221 | DOI | MR | Zbl | Zbl

[14] J. Pruss, A. Rhandi, R. Schnaubelt, “The domain of elliptic operators on $L_p(R^d)$ with unbounded drift coefficients”, Houston J. Math., 32 (2006), 563–576 | MR | Zbl

[15] E.S. Smailov, “Difference theorems of embedding for Sobolev spaces with weight and their applications”, Dokl. AN SSSR, 270:1 (1983), 52–55 | MR | Zbl