On fundamental solutions of a class of weak hyperbolic operators
Eurasian mathematical journal, Tome 9 (2018) no. 2, pp. 54-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a certain class of polyhedrons $\mathfrak{R}\subset\mathbb{E}^n$, multi-anisotropic Jevre spaces $G^{\mathfrak{R}}(\mathbb{E}^n)$, their subspaces $G_0^{\mathfrak{R}}(\mathbb{E}^n)$, consisting of all functions $f\in G^{\mathfrak{R}}(\mathbb{E}^n)$ with compact support, and their duals $(G_0^{\mathfrak{R}}(\mathbb{E}^n))^*$. We introduce the notion of a linear differential operator $P(D)$, $h_{\mathfrak{R}}$-hyperbolic with respect to a vector $N\in\mathbb{E}^n$, where $h_{\mathfrak{R}}$ is a weight function generated by the polyhedron $\mathfrak{R}$. The existence is shown of a fundamental solution $E$ of the operator $P(D)$ belonging to $(G_0^{\mathfrak{R}}(\mathbb{E}^n))^*$ with $\mathrm{supp}\, E\subset\overline{\Omega_N}$, where $\Omega_N:=\{x\in\mathbb{E}^n, (x, N)>0\}$. It is also shown that for any right-hand side $f\in G^{\mathfrak{R}}(\mathbb{E}^n)$ with the support in a cone contained in $\overline{\Omega_N}$ and with the vertex at the origin of $\mathbb{E}^n$, the equation $P(D)u = f$ has a solution belonging to $G^{\mathfrak{R}}(\mathbb{E}^n)$.
@article{EMJ_2018_9_2_a6,
     author = {V. N. Margaryan and H. G. Ghazaryan},
     title = {On fundamental solutions of a class of weak hyperbolic operators},
     journal = {Eurasian mathematical journal},
     pages = {54--67},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a6/}
}
TY  - JOUR
AU  - V. N. Margaryan
AU  - H. G. Ghazaryan
TI  - On fundamental solutions of a class of weak hyperbolic operators
JO  - Eurasian mathematical journal
PY  - 2018
SP  - 54
EP  - 67
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a6/
LA  - en
ID  - EMJ_2018_9_2_a6
ER  - 
%0 Journal Article
%A V. N. Margaryan
%A H. G. Ghazaryan
%T On fundamental solutions of a class of weak hyperbolic operators
%J Eurasian mathematical journal
%D 2018
%P 54-67
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a6/
%G en
%F EMJ_2018_9_2_a6
V. N. Margaryan; H. G. Ghazaryan. On fundamental solutions of a class of weak hyperbolic operators. Eurasian mathematical journal, Tome 9 (2018) no. 2, pp. 54-67. http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a6/

[1] D. Calvo, Multianizotropic Gevrey classes and Cauchy problem, Ph.D. Thesis in Mathematics, Universita degli Studi di Pisa, 2000

[2] A. Corli, “Un teorema di rappresentazione per certe classi generelizzate di Gevrey”, Boll. Un. Mat. It. Serie 6, 4:1 (1985), 245–257 | MR | Zbl

[3] M. Gevre, “Sur la nature analitique des solutions des equations aux derivatives partielles”, Ann. Ecole. Norm. Sup., Paris, 35 (1918), 129–190 | DOI | MR | Zbl

[4] L. Görding, “Linear hyperbolic partial differential equations with constant coefficients”, Acta Math., 85 (1951), 1–62 | DOI | MR

[5] L. Hörmander, The analysis of linear partial differential operators, v. I, II, Springer-Verlag, 1983 | MR

[6] V.Ya. Ivri, “Well posedness in Gevrey class of the Cauchy problem for non-strictly hyperbolic equation”, Math. Sb., 96 (138) (1975), 390–413 | MR | Zbl

[7] V.Ya. Ivri, “Linear hyperbolic equations”, Partial Differential Equations, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 33, VINITI, 1988 | MR

[8] K. Kajitani, “Cauchy problem for non-strictly hyperbolic systems”, Pull. Res. Inst. Math. Sci., 15:2 (1979), 519–550 | DOI | MR | Zbl

[9] A.N. Kolmogorov, S.V. Fomin, Elements of the theory of functions and functional analysis, Dover Publ., Inc., Mineola, New York, 1999 | MR

[10] P. Kythe, Fundamental solutions for differential operators and applications, Birkhäuser, Boston–Basel–Berlin, 2012 | MR

[11] E. Larsson, “Generalized hyperbolisity”, Ark. Mat., 7 (1967), 11–32 | DOI | MR | Zbl

[12] V.N. Margaryan, G.H. Hakobyan, “On Gevrey type solutions of hypoelliptic equations”, Journal of Contemporary Math. Analysis, 31:2 (1996), 33–47 | MR | Zbl

[13] V.N. Margaryan, H.G. Ghazaryan, “On Cauchy's problem in the multianisotropic Jevre classis for hyperbolic equations”, Journal of Contemporary Math. Analysis, 50:3 (2015), 36–46 | DOI | MR | Zbl

[14] S. Mizohata, On the Cachy problem, Notes and Reports on Mathematics in Science and Enginerings, 3, Acad press Inc., Orlando; FL science press, Beijing, 1985 | MR

[15] V.P. Mikhailov, “The behaviour of a class of polynomials at infinity”, Proc. Steklov Inst. Math., 91, 1967, 59–81 (in Russian) | MR

[16] I.G. Petrowsky, “Über das Cauchysche problem für systeme von partiellen differentialgleichungen”, Math. Sb., 2 (44) (1937), 815–870 | Zbl

[17] L. Rodino, Linear partial differential operators in Gevrey spaces, Word Scientific, Singapure, 1993 | MR | Zbl