On fundamental solutions of a class of weak hyperbolic operators
Eurasian mathematical journal, Tome 9 (2018) no. 2, pp. 54-67

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a certain class of polyhedrons $\mathfrak{R}\subset\mathbb{E}^n$, multi-anisotropic Jevre spaces $G^{\mathfrak{R}}(\mathbb{E}^n)$, their subspaces $G_0^{\mathfrak{R}}(\mathbb{E}^n)$, consisting of all functions $f\in G^{\mathfrak{R}}(\mathbb{E}^n)$ with compact support, and their duals $(G_0^{\mathfrak{R}}(\mathbb{E}^n))^*$. We introduce the notion of a linear differential operator $P(D)$, $h_{\mathfrak{R}}$-hyperbolic with respect to a vector $N\in\mathbb{E}^n$, where $h_{\mathfrak{R}}$ is a weight function generated by the polyhedron $\mathfrak{R}$. The existence is shown of a fundamental solution $E$ of the operator $P(D)$ belonging to $(G_0^{\mathfrak{R}}(\mathbb{E}^n))^*$ with $\mathrm{supp}\, E\subset\overline{\Omega_N}$, where $\Omega_N:=\{x\in\mathbb{E}^n, (x, N)>0\}$. It is also shown that for any right-hand side $f\in G^{\mathfrak{R}}(\mathbb{E}^n)$ with the support in a cone contained in $\overline{\Omega_N}$ and with the vertex at the origin of $\mathbb{E}^n$, the equation $P(D)u = f$ has a solution belonging to $G^{\mathfrak{R}}(\mathbb{E}^n)$.
@article{EMJ_2018_9_2_a6,
     author = {V. N. Margaryan and H. G. Ghazaryan},
     title = {On fundamental solutions of a class of weak hyperbolic operators},
     journal = {Eurasian mathematical journal},
     pages = {54--67},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a6/}
}
TY  - JOUR
AU  - V. N. Margaryan
AU  - H. G. Ghazaryan
TI  - On fundamental solutions of a class of weak hyperbolic operators
JO  - Eurasian mathematical journal
PY  - 2018
SP  - 54
EP  - 67
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a6/
LA  - en
ID  - EMJ_2018_9_2_a6
ER  - 
%0 Journal Article
%A V. N. Margaryan
%A H. G. Ghazaryan
%T On fundamental solutions of a class of weak hyperbolic operators
%J Eurasian mathematical journal
%D 2018
%P 54-67
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a6/
%G en
%F EMJ_2018_9_2_a6
V. N. Margaryan; H. G. Ghazaryan. On fundamental solutions of a class of weak hyperbolic operators. Eurasian mathematical journal, Tome 9 (2018) no. 2, pp. 54-67. http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a6/