Existence of periodic solutions for a class of $p$-Hamiltonian systems
Eurasian mathematical journal, Tome 9 (2018) no. 2, pp. 22-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on some variational methods for smooth functionals defined on reflexive Banach spaces, the existence of periodic solutions for a class of $p$-Hamiltonian systems is established.
@article{EMJ_2018_9_2_a3,
     author = {M. R. Heidari Tavani},
     title = {Existence of periodic solutions for a class of $p${-Hamiltonian} systems},
     journal = {Eurasian mathematical journal},
     pages = {22--33},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a3/}
}
TY  - JOUR
AU  - M. R. Heidari Tavani
TI  - Existence of periodic solutions for a class of $p$-Hamiltonian systems
JO  - Eurasian mathematical journal
PY  - 2018
SP  - 22
EP  - 33
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a3/
LA  - en
ID  - EMJ_2018_9_2_a3
ER  - 
%0 Journal Article
%A M. R. Heidari Tavani
%T Existence of periodic solutions for a class of $p$-Hamiltonian systems
%J Eurasian mathematical journal
%D 2018
%P 22-33
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a3/
%G en
%F EMJ_2018_9_2_a3
M. R. Heidari Tavani. Existence of periodic solutions for a class of $p$-Hamiltonian systems. Eurasian mathematical journal, Tome 9 (2018) no. 2, pp. 22-33. http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a3/

[1] G. Bonanno, “A critical point theorem via the Ekeland variational principle”, Nonlinear Analysis, 75 (2012), 2992–3007 | DOI | MR | Zbl

[2] G. Bonanno, P. Candito, “Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities”, J. Differential Equations, 244 (2008), 3031–3059 | DOI | MR | Zbl

[3] G. Bonanno, A. Chinnì, “Existence of three solutions for a perturbed two-point boundary value problem”, Appl. Math. Lett., 23 (2010), 807–811 | DOI | MR | Zbl

[4] G. Bonanno, G. D'Aguí, “Multiplicity results for a perturbed elliptic Neumann problem”, Abstract and Applied Analysis, 2010 (2010), 10 pp. | DOI | MR

[5] G. Bonanno, R. Livrea, “Multiple periodic solutions for Hamiltonian systems with not coercive potential”, J. Math. Anal. Appl., 363 (2010), 627–638 | DOI | MR | Zbl

[6] G. Bonanno, R. Livrea, “Periodic solutions for a class of second-order Hamiltonian systems”, Electron. J. Differential Equations, 115 (2005), 1–13 | MR

[7] G. Bonanno, S.A. Marano, “On the structure of the critical set of non-differentiable functions with a weak compactness condition”, Appl. Anal., 89 (2010), 1–10 | DOI | MR | Zbl

[8] G. Bonanno, G. Molica Bisci, “Infinitely many solutions for a boundary value problem with discontinuous nonlinearities”, Bound. Value Probl., 2009 (2009), 1–20 | DOI | MR

[9] P. Candito, G. D'Aguì, “Three solutions to a perturbed nonlinear discrete Dirichlet problem”, J. Math. Anal., 375 (2011), 594–601 | DOI | MR | Zbl

[10] H. Chen, Z. He, “New results for perturbed Hamiltonian systems with impulses”, Applied Mathematics and Computation, 218 (2012), 9489–9497 | DOI | MR | Zbl

[11] G.W. Chen, J. Wang, “Ground state homoclinic orbits of damped vibration problems”, Boundary Value Problems, 2014:106 (2014) | MR

[12] G. Cordaro, “Three periodic solutions to an eigenvalue problem for a class of second order Hamiltonian systems”, Abstr. Appl. Anal., 18 (2003), 1037–1045 | DOI | MR | Zbl

[13] G. Cordaro, G. Rao, “Three periodic solutions for perturbed second order Hamiltonian systems”, J. Math. Anal. Appl., 359 (2009), 780–785 | DOI | MR | Zbl

[14] G. D'Aguì, A. Sciammetta, “Infinitely many solutions to elliptic problems with variable exponent and non-homogeneous Neumann conditions”, Nonlinear Anal., 75 (2012), 5612–5619 | DOI | MR | Zbl

[15] F. Faraci, “Multiple periodic solutions for second order systems with changing sign potential”, J. Math. Anal. Appl., 319 (2006), 567–578 | DOI | MR | Zbl

[16] F. Faraci, R. Livrea, “Infinitely many periodic solutions for a second-order nonautonomous system”, Nonlinear Anal., 54 (2003), 417–429 | DOI | MR | Zbl

[17] M.R. Heidari Tavani, G. Afrouzi, S. Heidarkhani, “Multiple solutions for a class of perturbed damped vibration problems”, J. Math. Computer Sci., 16 (2016), 351–363 | DOI

[18] J.R. Graef, S. Heidarkhani, L. Kong, Infinitely many solutions for a class of perturbed second-order impulsive Hamiltonian systems, preprint | MR

[19] S. Heidarkhani, J. Henderson, “Multiple solutions for a nonlocal perturbed elliptic problem of $p$-Kirchhoff type”, Communications on Applied Nonlinear Analysis, 19:3 (2012), 25–39 | MR | Zbl

[20] J. Mawhin, M. Willem, Critical point theory and Hamiltonian systems, Springer-Verlag, New York–Berlin–Heidelberg–London–Paris–Tokyo, 1989 | MR | Zbl

[21] Z. Ou, C. Tang, “Existence of homoclinic solution for the second order Hamiltonian systems”, J. Math. Anal. Appl., 291 (2004), 203–213 | DOI | MR | Zbl

[22] P.H. Rabinowitz, “Homoclinic orbits for a class of Hamiltonian systems”, Proc. Roy. Soc. Edinb., 114 (1990), 33–38 | DOI | MR | Zbl

[23] P.H. Rabinowitz, “Variational methods for Hamiltonian systems”, Handbook of Dynamical Systems, Part 1, Chapter 14, v. 1, North-Holland, 2002, 1091–1127 | MR | Zbl

[24] B. Ricceri, “A general variational principle and some of its applications”, J. Comput. Appl. Math., 113 (2000), 401–410 | DOI | MR | Zbl

[25] J. Simon, “Regularitè de la solution d'une equation non lineaire dans $\mathbb{R}^N$”, Journèes d'Analyse Non Linèaire, 665 (1978), 205–227 | DOI | MR | Zbl

[26] C.L. Tang, “Periodic solutions for non-autonomous second order systems with sublinear nonlinearity”, Proc. Amer. Math. Soc., 126:11 (1998), 3263–3270 | DOI | MR | Zbl

[27] C.L Tang, “Periodic solutions of non-autonomous second order systems with $\gamma$-quasisubadditive potential”, J. Math. Anal. Appl., 189 (1995), 671–675 | DOI | MR | Zbl

[28] C.L. Tang, X.P. Wu, “Periodic solutions for a class of nonautonomous subquadratic second order Hamiltonian systems”, J. Math. Anal. Appl., 275 (2002), 870–882 | DOI | MR | Zbl

[29] X. Wu, J. Chen, “Existence theorems of periodic solutions for a class of damped vibration problems”, Applied Mathematics and Computation, 207 (2009), 230–235 | DOI | MR | Zbl

[30] X. Wu, S. Chen, K. Teng, “On variational methods for a class of damped vibration problems”, Nonlinear Analysis, 68 (2008), 1432–1441 | DOI | MR | Zbl

[31] X. Wu, W. Zhang, “Existence and multiplicity of homoclinic solutions for a class of damped vibration problems”, Nonlinear Anal., 74 (2011), 4392–4398 | DOI | MR | Zbl

[32] B. Xu, C.L. Tang, “Some existence results on periodic solutions of ordinary $p$-Laplacian systems”, J. Math. Anal. Appl., 333 (2007), 1228–1236 | DOI | MR | Zbl

[33] E. Zeidler, Nonlinear functional analysis and its applications, v. II, Berlin–Heidelberg–New York, 1985 | MR

[34] C.L. Zeng, Q. Ou, C.L. Tang, “Three periodic solutions for $p$-Hamiltonian systems”, Nonlinear Anal., 74 (2011), 1596–1606 | DOI | MR | Zbl

[35] W. Zou, S. Li, “Infinitely many homoclinic orbits for the second-order Hamiltonian systems”, Appl. Math. Lett., 16 (2003), 1283–1287 | DOI | MR | Zbl

[36] W. Zou, S. Li, “Infinitely many solutions for Hamiltonian systems”, J. Differential Equations, 186 (2002), 141–164 | DOI | MR