On some constructions of a non-periodic modulus of smoothness related to the Riesz derivative
Eurasian mathematical journal, Tome 9 (2018) no. 2, pp. 11-21
Voir la notice de l'article provenant de la source Math-Net.Ru
A new non-periodic modulus of smoothness related to the Riesz derivative is constructed. Its properties are studied in the spaces $L_p(\mathbb{R})$ of non-periodic functions with $1\leqslant p\leqslant+\infty$. The direct Jackson type estimate is proved. It is shown that the introduced modulus is equivalent to the $K$-functional related to the Riesz derivative and to the approximation error of the convolution integrals generated by the Fejér kernel.
@article{EMJ_2018_9_2_a2,
author = {S. Yu. Artamonov},
title = {On some constructions of a non-periodic modulus of smoothness related to the {Riesz} derivative},
journal = {Eurasian mathematical journal},
pages = {11--21},
publisher = {mathdoc},
volume = {9},
number = {2},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a2/}
}
TY - JOUR AU - S. Yu. Artamonov TI - On some constructions of a non-periodic modulus of smoothness related to the Riesz derivative JO - Eurasian mathematical journal PY - 2018 SP - 11 EP - 21 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a2/ LA - en ID - EMJ_2018_9_2_a2 ER -
S. Yu. Artamonov. On some constructions of a non-periodic modulus of smoothness related to the Riesz derivative. Eurasian mathematical journal, Tome 9 (2018) no. 2, pp. 11-21. http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a2/