On some constructions of a non-periodic modulus of smoothness related to the Riesz derivative
Eurasian mathematical journal, Tome 9 (2018) no. 2, pp. 11-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new non-periodic modulus of smoothness related to the Riesz derivative is constructed. Its properties are studied in the spaces $L_p(\mathbb{R})$ of non-periodic functions with $1\leqslant p\leqslant+\infty$. The direct Jackson type estimate is proved. It is shown that the introduced modulus is equivalent to the $K$-functional related to the Riesz derivative and to the approximation error of the convolution integrals generated by the Fejér kernel.
@article{EMJ_2018_9_2_a2,
     author = {S. Yu. Artamonov},
     title = {On some constructions of a non-periodic modulus of smoothness related to the {Riesz} derivative},
     journal = {Eurasian mathematical journal},
     pages = {11--21},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a2/}
}
TY  - JOUR
AU  - S. Yu. Artamonov
TI  - On some constructions of a non-periodic modulus of smoothness related to the Riesz derivative
JO  - Eurasian mathematical journal
PY  - 2018
SP  - 11
EP  - 21
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a2/
LA  - en
ID  - EMJ_2018_9_2_a2
ER  - 
%0 Journal Article
%A S. Yu. Artamonov
%T On some constructions of a non-periodic modulus of smoothness related to the Riesz derivative
%J Eurasian mathematical journal
%D 2018
%P 11-21
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a2/
%G en
%F EMJ_2018_9_2_a2
S. Yu. Artamonov. On some constructions of a non-periodic modulus of smoothness related to the Riesz derivative. Eurasian mathematical journal, Tome 9 (2018) no. 2, pp. 11-21. http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a2/

[1] S. Artamonov, “On some properties of modulus of continuity related to the Riesz derivative”, Scientific Notes of Taurida National V. I. Vernadsky University. Series 'Physics and Mathematics Sciences', 24(63):3 (2011), 10–22 (in Russian)

[2] S. Artamonov, “Nonperiodic modulus of smoothness corresponding to the Riesz derivative”, Mat. Zametki, 99:6 (2016), 933–936 | DOI | MR | Zbl

[3] S. Artamonov, “Direct Jackson-type estimate for the general modulus of smoothness in the nonperiodic case”, Mat. Zametki, 97:5 (2015), 794–797 | DOI | MR | Zbl

[4] N. I. Achieser, Theory of approximation, Dover, New York, 1992 | MR

[5] Z. Burinska, K. Runovski, H.-J. Schmeisser, “On the approximation by generalized sampling series in Lp-metrics”, Sampling Theory in Signal and Image Processing, 5 (2006), 59–87 | MR | Zbl

[6] Z. Burinska, K. Runovski, H.-J. Schmeisser, “On quality of approximation by families of generalized sampling series”, Sampling Theory in Signal and Image Proc. (STSIP), 8:2 (2009), 105–126 | MR | Zbl

[7] P. Butzer, W. Splettstösser, R. Stens, “The sampling theorem and linear prediction in signal analysis”, Jahresberichte der Dt. Math-Verein, 90 (1988), 1–70 | MR | Zbl

[8] R. DeVore, G. Lorentz, Constructive approximation, Springer-Verlag, Berlin–Heidelberg, 1993 | MR | Zbl

[9] D. Jackson, Über die Genauigkeit der Annaheruny stetiger Funktionen durch ganze rationale Funktionen gegebenen Frades und trigonometrischen Summen gegebener Ordnung, Diss., Göttingen, 1911

[10] L. Hörmander, The analysis of linear partial differential operators I: Distribution theory and Fourier analysis, Springer-Verlag, Berlin–Heidelberg–New-York–Tokyo, 1983 | MR | Zbl

[11] K.V. Runovskii, “A direct theorem of approximation theory for a general modulus of smoothness”, Mat. Zametki, 95:6 (2014), 899–910 (in Russian) | DOI | MR

[12] K. Runovski, H.-J. Schmeisser, “Methods of trigonometric approximation and generalized smoothness. I”, Eurasian Math. J., 2:2 (2011), 98–124 | MR | Zbl

[13] K. Runovski, H.-J. Schmeisser, On modulus of continuity related to Riesz derivative, Jenaer Schriften fur Math. und Inf. Math/Inf/01/11. Preprint | MR

[14] H.-J. Schmeisser, W. Sickel, “Sampling theory and function spaces”, Applied Mathematics Reviews, 1 (2000), 205–284 | DOI | MR | Zbl

[15] S.B. Stechkin, “On order of best approximations of continuous functions”, Reports of AS of USSR, 65:2 (1949), 135–137 | MR | Zbl

[16] S.B. Stechkin, “On order of best approximations of continuous functions”, Izv. AS of USSR Math. departm., 15:3 (1951), 219–242 | MR | Zbl

[17] A.F. Timan, Theory of approximation of functions of a real variable, Dover Publ, Inc., New York, 1994 | MR

[18] H. Triebel, Theory of function spaces, Geest K.-G., Leipzig, 1983 | MR | Zbl