Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2018_9_1_a4, author = {I. V. Orlov}, title = {Generalized {Hamel} basis and basis extension in convex cones and uniquely divisible semigroups}, journal = {Eurasian mathematical journal}, pages = {69--82}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a4/} }
TY - JOUR AU - I. V. Orlov TI - Generalized Hamel basis and basis extension in convex cones and uniquely divisible semigroups JO - Eurasian mathematical journal PY - 2018 SP - 69 EP - 82 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a4/ LA - en ID - EMJ_2018_9_1_a4 ER -
I. V. Orlov. Generalized Hamel basis and basis extension in convex cones and uniquely divisible semigroups. Eurasian mathematical journal, Tome 9 (2018) no. 1, pp. 69-82. http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a4/
[1] T.A. Abreu, T.A. Corbacho, V. Tarieladze, Uniform type conoids, Preprint, 2006 | MR
[2] E.G. Bachtigareeva, M.L. Goldman, “Associated norms and optimal embeddings for some class of two weight integral quasinorms”, Fundamental and Appl. Math., 19:5 (2014), 3–33 (in Russian) | MR
[3] E.G. Bachtigareeva, “Optimal Banach function space for given cone of increasing functions in weighted $L_p$-space”, Eurasian Math. J., 6:1 (2015), 6–25 | MR
[4] R.G. Bartle, D.R. Shelbort, Introduction to Real Analysis, Wiley, N.Y., 2011 | MR
[5] R. Becker, Convex cones in Analysis, Hermann, 2006 | MR
[6] G. Birkhoff, “Integration of functions with values in a Banach space”, Trans. Amer. Math. Soc., 38 (1935), 357–378 | MR
[7] H. Cartan, S. Eilenberg, Homological algebra, Princeton Univer. Press, New York, 1999 | MR
[8] P.M. Cohn, Universal algebra, Reidel, 2011 | MR
[9] E. Corbacho, D. Dikranjan, V. Tarieladze, “Absorption adjunctable semigroups”, Research and Exposition in Math., 24 (2000), 77–103 | MR
[10] S. Feigelstock, “Divisible is injective”, Soochow J. Math., 32:2 (2006), 241–243 | MR
[11] A. Fraenkel, I. Bar-Hillel, Foundations of set theory, North Holland, 1973 | MR
[12] B. Fuchssteiner, W. Lusky, Convex cones, North Holland Math. Stud., 56, North Holland, Amsterdam, 1981 | MR
[13] G. Godini, “A framework for best simultaneous approximation, normed almost linear spaces”, Approx. Theory, 43 (1985), 338–358 | DOI | MR
[14] M.L. Goldman, P.P. Zabreiko, “Optimal Banach function spaces, generated by the cone of non-negative increasing functions”, Proceedings of Inst. Math. of Nat. Acad. of Sc. of Belarus, 22:1 (2014), 24–34 (in Russian)
[15] G. Hamel, “Eine Basis aller Zahlen und die unstetigen Lösungen der Functionalgleichung: $f(x + y) = f(x) + f(y)$”, Math. Ann., 60 (1905), 459–462 | DOI | MR
[16] A. Hamel, A. Löhne, Minimal set theorems, Reports of the Institute of Optimization and Stochastics No 11, Martin-Luther-Universität, Halle-Vittenberg, 2008
[17] K. Keimel, W. Roth, Ordered cones and approximation, Lecture Notes in Math., 1517, Springer, Berlin, 1992 | DOI | MR
[18] A. Löhne, On convex functions with values in semi-linear spaces, , 2004 http://ito.mathematik.uni-halle.de/l̃oehne/pdf/cf_web.pdf
[19] I.V. Orlov, “Embedding of a uniquely divisible Abelian semigroup in a convex cone”, Math. Notes, 102:3–4 (2017), 361–368 | DOI | MR
[20] I.V. Orlov, “Introduction to Sublinear Analysis”, Journal of Mathematical Sciences, 218:4 (2016), 430–502 | DOI | MR
[21] I.V. Orlov, “Inverse and implicit function theorems in the class of subsmooth maps”, Math. Notes, 99:3 (2016), 619–622 | DOI | MR
[22] E.S. Polovinkin, M.V. Balashov, Elements of the convex and strongly convex analysis, Fizmatlit, M., 2004 (in Russian) | MR
[23] J.H. Rädström, “An embedding theorem for space of convex sets”, Proc. Amer. Math. Soc., 3 (1952), 165–169 | DOI | MR
[24] V.D. Stepanov, “On optimal Banach spaces containing a weight cone of monotone or quasiconcave function”, Math. Notes, 98:6 (2015), 907–922 | MR
[25] F.S. Stonyakin, “An analogue of the Hahn–Banach theorem for functionals on abstract convex cones”, Eurasian Math. J., 7:3 (2016), 89–99 | MR
[26] R. Urbanski, “A generalization of the Minkovski–Rädström–Hörmander theorem”, Bull. L'Acad. Pol. Sci., 24:9 (1976), 709–715 | MR
[27] R.E. Worth, “Boundaries of semilinear spaces and semialgebras”, Trans. Amer. Math. Soc., 148 (1970), 99–119 | DOI | MR