Generalized Hamel basis and basis extension in convex cones and uniquely divisible semigroups
Eurasian mathematical journal, Tome 9 (2018) no. 1, pp. 69-82

Voir la notice de l'article provenant de la source Math-Net.Ru

In the work, a concept of sublinear independence in an arbitrary convex cone is introduced and the corresponding generalization of Hamel basis is studied. Applying these results to the cones generated by uniquely divisible semigroups ((UD)-semigroups) allows us to extend obtained results for the class of (UD)-semigroups. Some applications are considered.
@article{EMJ_2018_9_1_a4,
     author = {I. V. Orlov},
     title = {Generalized {Hamel} basis and basis extension in convex cones and uniquely divisible semigroups},
     journal = {Eurasian mathematical journal},
     pages = {69--82},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a4/}
}
TY  - JOUR
AU  - I. V. Orlov
TI  - Generalized Hamel basis and basis extension in convex cones and uniquely divisible semigroups
JO  - Eurasian mathematical journal
PY  - 2018
SP  - 69
EP  - 82
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a4/
LA  - en
ID  - EMJ_2018_9_1_a4
ER  - 
%0 Journal Article
%A I. V. Orlov
%T Generalized Hamel basis and basis extension in convex cones and uniquely divisible semigroups
%J Eurasian mathematical journal
%D 2018
%P 69-82
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a4/
%G en
%F EMJ_2018_9_1_a4
I. V. Orlov. Generalized Hamel basis and basis extension in convex cones and uniquely divisible semigroups. Eurasian mathematical journal, Tome 9 (2018) no. 1, pp. 69-82. http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a4/