Inequalities for weighted Hardy operators in weighted variable exponent Lebesgue space with $0 p(x) 1$
Eurasian mathematical journal, Tome 9 (2018) no. 1, pp. 30-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Weighted inequalities are proved for the weighted Hardy operators and the weighted dual of the classical Hardy operator acting from one weighted variable exponent Lebesgue space $L_{p(.),\omega_1} (0,\infty)$ to another weighted variable exponent Lebesgue space $L_{p(.),\omega_2} (0,\infty)$ for $0 p(x) \leqslant q(x) 1$.
@article{EMJ_2018_9_1_a2,
     author = {S. A. Bendaoud and A. Senouci},
     title = {Inequalities for weighted {Hardy} operators in weighted variable exponent {Lebesgue} space with $0 < p(x) < 1$},
     journal = {Eurasian mathematical journal},
     pages = {30--39},
     year = {2018},
     volume = {9},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a2/}
}
TY  - JOUR
AU  - S. A. Bendaoud
AU  - A. Senouci
TI  - Inequalities for weighted Hardy operators in weighted variable exponent Lebesgue space with $0 < p(x) < 1$
JO  - Eurasian mathematical journal
PY  - 2018
SP  - 30
EP  - 39
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a2/
LA  - en
ID  - EMJ_2018_9_1_a2
ER  - 
%0 Journal Article
%A S. A. Bendaoud
%A A. Senouci
%T Inequalities for weighted Hardy operators in weighted variable exponent Lebesgue space with $0 < p(x) < 1$
%J Eurasian mathematical journal
%D 2018
%P 30-39
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a2/
%G en
%F EMJ_2018_9_1_a2
S. A. Bendaoud; A. Senouci. Inequalities for weighted Hardy operators in weighted variable exponent Lebesgue space with $0 < p(x) < 1$. Eurasian mathematical journal, Tome 9 (2018) no. 1, pp. 30-39. http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a2/

[1] N. Azzouz, B. Halim, A. Senouci, “An inequality for the weighted Hardy operator for $0 p 1$”, Eurasian Math. J., 4:3 (2013), 60–65 | MR

[2] Math. Notes, 84:3 (2008), 303–313 | DOI | DOI | MR

[3] R.A. Bandaliev, “On Hardy-type inequalities in weighted variable exponent spaces $L_{p(x),\omega}$ for $0 p 1$”, Eurasian Math. J., 4:4 (2013), 5–16 | MR

[4] V.I. Burenkov, Function spaces. Main integral inequalities related to $L^p$-space, Peoples' Friendship University of Russia, M., 1989, 96 pp. (in Russian)

[5] Proc. Steklov Inst. Math., 194:4 (1993), 59–63 | MR

[6] L. Diening, “Maximal function on generalized Lebesgue spaces $L^{p(.)}$”, Math. Inequal. Appl., 7:2 (2004), 245–254 | MR

[7] O. Kovac̆ik, J. Râkosnik, “On spaces $L^{p(x)}$ and $W^{k,p(x)}$”, Czechoslovak Math. J., 41:4 (1991), 592–618 | MR

[8] W. Orlicz, “Über konjugierte Exponentenfolgen”, Stud. Math., 3 (1931), 200–212 | DOI

[9] M. Ruz̆ic̆ka, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, 1748, Springer, Berlin, 2000 | MR

[10] S.G. Samko, “Differentiation and integration of variable order and the spaces $L^{p(x)}$”, Proc. Inter. Conf. “Operator theory for complex and hypercomplex analysis” (Mexico, 1994), Contemp. Math., 212, 1998, 203–219 | DOI | MR

[11] A. Senouci, T. Tararykova, “Hardy-type inequality for $0 p 1$”, Evraziiskii Matematicheskii Zhurnal, 2 (2007), 112–116