Inequalities for weighted Hardy operators in weighted variable exponent Lebesgue space with $0 p(x) 1$
Eurasian mathematical journal, Tome 9 (2018) no. 1, pp. 30-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

Weighted inequalities are proved for the weighted Hardy operators and the weighted dual of the classical Hardy operator acting from one weighted variable exponent Lebesgue space $L_{p(.),\omega_1} (0,\infty)$ to another weighted variable exponent Lebesgue space $L_{p(.),\omega_2} (0,\infty)$ for $0 p(x) \leqslant q(x) 1$.
@article{EMJ_2018_9_1_a2,
     author = {S. A. Bendaoud and A. Senouci},
     title = {Inequalities for weighted {Hardy} operators in weighted variable exponent {Lebesgue} space with $0 < p(x) < 1$},
     journal = {Eurasian mathematical journal},
     pages = {30--39},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a2/}
}
TY  - JOUR
AU  - S. A. Bendaoud
AU  - A. Senouci
TI  - Inequalities for weighted Hardy operators in weighted variable exponent Lebesgue space with $0 < p(x) < 1$
JO  - Eurasian mathematical journal
PY  - 2018
SP  - 30
EP  - 39
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a2/
LA  - en
ID  - EMJ_2018_9_1_a2
ER  - 
%0 Journal Article
%A S. A. Bendaoud
%A A. Senouci
%T Inequalities for weighted Hardy operators in weighted variable exponent Lebesgue space with $0 < p(x) < 1$
%J Eurasian mathematical journal
%D 2018
%P 30-39
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a2/
%G en
%F EMJ_2018_9_1_a2
S. A. Bendaoud; A. Senouci. Inequalities for weighted Hardy operators in weighted variable exponent Lebesgue space with $0 < p(x) < 1$. Eurasian mathematical journal, Tome 9 (2018) no. 1, pp. 30-39. http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a2/

[1] N. Azzouz, B. Halim, A. Senouci, “An inequality for the weighted Hardy operator for $0 p 1$”, Eurasian Math. J., 4:3 (2013), 60–65 | MR

[2] Math. Notes, 84:3 (2008), 303–313 | DOI | DOI | MR

[3] R.A. Bandaliev, “On Hardy-type inequalities in weighted variable exponent spaces $L_{p(x),\omega}$ for $0 p 1$”, Eurasian Math. J., 4:4 (2013), 5–16 | MR

[4] V.I. Burenkov, Function spaces. Main integral inequalities related to $L^p$-space, Peoples' Friendship University of Russia, M., 1989, 96 pp. (in Russian)

[5] Proc. Steklov Inst. Math., 194:4 (1993), 59–63 | MR

[6] L. Diening, “Maximal function on generalized Lebesgue spaces $L^{p(.)}$”, Math. Inequal. Appl., 7:2 (2004), 245–254 | MR

[7] O. Kovac̆ik, J. Râkosnik, “On spaces $L^{p(x)}$ and $W^{k,p(x)}$”, Czechoslovak Math. J., 41:4 (1991), 592–618 | MR

[8] W. Orlicz, “Über konjugierte Exponentenfolgen”, Stud. Math., 3 (1931), 200–212 | DOI

[9] M. Ruz̆ic̆ka, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, 1748, Springer, Berlin, 2000 | MR

[10] S.G. Samko, “Differentiation and integration of variable order and the spaces $L^{p(x)}$”, Proc. Inter. Conf. “Operator theory for complex and hypercomplex analysis” (Mexico, 1994), Contemp. Math., 212, 1998, 203–219 | DOI | MR

[11] A. Senouci, T. Tararykova, “Hardy-type inequality for $0 p 1$”, Evraziiskii Matematicheskii Zhurnal, 2 (2007), 112–116