Inequalities for weighted Hardy operators in weighted variable exponent Lebesgue space with $0 p(x) 1$
Eurasian mathematical journal, Tome 9 (2018) no. 1, pp. 30-39
Voir la notice de l'article provenant de la source Math-Net.Ru
Weighted inequalities are proved for the weighted Hardy operators and the weighted dual of the classical Hardy operator acting from one weighted variable exponent Lebesgue space $L_{p(.),\omega_1} (0,\infty)$ to another weighted variable exponent Lebesgue space $L_{p(.),\omega_2} (0,\infty)$ for $0 p(x) \leqslant q(x) 1$.
@article{EMJ_2018_9_1_a2,
author = {S. A. Bendaoud and A. Senouci},
title = {Inequalities for weighted {Hardy} operators in weighted variable exponent {Lebesgue} space with $0 < p(x) < 1$},
journal = {Eurasian mathematical journal},
pages = {30--39},
publisher = {mathdoc},
volume = {9},
number = {1},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a2/}
}
TY - JOUR AU - S. A. Bendaoud AU - A. Senouci TI - Inequalities for weighted Hardy operators in weighted variable exponent Lebesgue space with $0 < p(x) < 1$ JO - Eurasian mathematical journal PY - 2018 SP - 30 EP - 39 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a2/ LA - en ID - EMJ_2018_9_1_a2 ER -
%0 Journal Article %A S. A. Bendaoud %A A. Senouci %T Inequalities for weighted Hardy operators in weighted variable exponent Lebesgue space with $0 < p(x) < 1$ %J Eurasian mathematical journal %D 2018 %P 30-39 %V 9 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a2/ %G en %F EMJ_2018_9_1_a2
S. A. Bendaoud; A. Senouci. Inequalities for weighted Hardy operators in weighted variable exponent Lebesgue space with $0 < p(x) < 1$. Eurasian mathematical journal, Tome 9 (2018) no. 1, pp. 30-39. http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a2/