Inequalities for weighted Hardy operators in weighted variable exponent Lebesgue space with $0 p(x) 1$
Eurasian mathematical journal, Tome 9 (2018) no. 1, pp. 30-39

Voir la notice de l'article provenant de la source Math-Net.Ru

Weighted inequalities are proved for the weighted Hardy operators and the weighted dual of the classical Hardy operator acting from one weighted variable exponent Lebesgue space $L_{p(.),\omega_1} (0,\infty)$ to another weighted variable exponent Lebesgue space $L_{p(.),\omega_2} (0,\infty)$ for $0 p(x) \leqslant q(x) 1$.
@article{EMJ_2018_9_1_a2,
     author = {S. A. Bendaoud and A. Senouci},
     title = {Inequalities for weighted {Hardy} operators in weighted variable exponent {Lebesgue} space with $0 < p(x) < 1$},
     journal = {Eurasian mathematical journal},
     pages = {30--39},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a2/}
}
TY  - JOUR
AU  - S. A. Bendaoud
AU  - A. Senouci
TI  - Inequalities for weighted Hardy operators in weighted variable exponent Lebesgue space with $0 < p(x) < 1$
JO  - Eurasian mathematical journal
PY  - 2018
SP  - 30
EP  - 39
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a2/
LA  - en
ID  - EMJ_2018_9_1_a2
ER  - 
%0 Journal Article
%A S. A. Bendaoud
%A A. Senouci
%T Inequalities for weighted Hardy operators in weighted variable exponent Lebesgue space with $0 < p(x) < 1$
%J Eurasian mathematical journal
%D 2018
%P 30-39
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a2/
%G en
%F EMJ_2018_9_1_a2
S. A. Bendaoud; A. Senouci. Inequalities for weighted Hardy operators in weighted variable exponent Lebesgue space with $0 < p(x) < 1$. Eurasian mathematical journal, Tome 9 (2018) no. 1, pp. 30-39. http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a2/