Deformation of spectrum and length spectrum on some compact nilmanifolds under the Ricci flow
Eurasian mathematical journal, Tome 9 (2018) no. 1, pp. 11-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we study the eigenvalue variations of Heisenberg and quaternion Lie groups under the Ricci flow and we investigate the deformation of some characteristics of compact nilmanifolds $\Gamma\setminus N$ under the Ricci flow, where $N$ is a simply connected $2$-step nilpotent Lie group with a left invariant metric and $\Gamma$ is a discrete cocompact subgroup of $N$, in particular Heisenberg and quaternion Lie groups.
@article{EMJ_2018_9_1_a1,
     author = {S. Azami and A. Razavi},
     title = {Deformation of spectrum and length spectrum on some compact nilmanifolds under the {Ricci} flow},
     journal = {Eurasian mathematical journal},
     pages = {11--29},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a1/}
}
TY  - JOUR
AU  - S. Azami
AU  - A. Razavi
TI  - Deformation of spectrum and length spectrum on some compact nilmanifolds under the Ricci flow
JO  - Eurasian mathematical journal
PY  - 2018
SP  - 11
EP  - 29
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a1/
LA  - en
ID  - EMJ_2018_9_1_a1
ER  - 
%0 Journal Article
%A S. Azami
%A A. Razavi
%T Deformation of spectrum and length spectrum on some compact nilmanifolds under the Ricci flow
%J Eurasian mathematical journal
%D 2018
%P 11-29
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a1/
%G en
%F EMJ_2018_9_1_a1
S. Azami; A. Razavi. Deformation of spectrum and length spectrum on some compact nilmanifolds under the Ricci flow. Eurasian mathematical journal, Tome 9 (2018) no. 1, pp. 11-29. http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a1/

[1] S. Azami, A. Razavi, “Ricci flow on quaternion Lie group”, Proceeding of 6th Seminar on Geometry and Topology (Iran, 2011), 177–180

[2] J. Berndt, F. Tricerri, L. Vanhecke, Generalized Heisenberg groups and Damek-Ricci harmonic spaces, Lecture Notes in Mathematics, 1598, Springer-Verlag, Berlin, 1995 | DOI | MR

[3] X.D. Cao, “First eigenvalue of geometric operators under the Ricci flow”, Proc. Amer. Math. Soc., 136 (2008), 4075–4078 | DOI | MR

[4] X.D. Cao, “Eigenvalues of $(-\Delta+\frac{R}2)$ on manifolds with nonnegetive curvature operator”, Math. Ann., 337 (2007), 435–441 | DOI | MR

[5] S.Y. Cheng, “Eigenfunctions and eigenvalues of Laplacian”, Differential Geometry, v. 2, Proc. Sympos. Pure Math., 27, AMS, Providence, Rhode Island, 1975, 185–193 | DOI | MR

[6] B. Chow, D. Knopf, The Ricci flow: an Introduction, Mathematical Surveys and Monographs, 110, AMS, 2004 | DOI | MR

[7] B. Chow, P. Lu, L. Ni, Hamilton's Ricci flow, Graduate Studies in Mathematics, 77, AMS, 2006 | DOI | MR

[8] D.M. DeTurck, “Deforming metrics in the direction of their Ricci tensors”, J. Differential Geometry, 18 (1983), 157–162 | DOI | MR

[9] P. Eberlein, “The geometry of 2-step nilpotent Lie groups with a left invariant metric”, Ann. Sci. Ecole Norm. Sup., 27:4 (1994), 611–660 | DOI | MR

[10] P. Eberlein, “Geometry of 2-step nilpotent groups with a left invariant metric”, Trans. Amer. Soc., 343:2 (1994), 805–828 | MR

[11] R. Gornet, M.B. Mast, “The length spectrum of Riemannian two-step nilmanifolds”, Ann. Sci. Ecole Norm. Sup., 4:2 (2000), 181–209 | DOI | MR

[12] R. Gornet, Y. Mao, “Geodesic conjugacies of two-step nilmanifolds”, Mich. Math. J., 45 (1998), 451–481 | DOI | MR

[13] C. Gordon, Y. Mao, “Comparisons of Laplace spectra, length spectra and geodesic flows of some Riemannian manifolds”, Mathematics Research Letters, 1 (1994), 677–688 | DOI | MR

[14] C. S. Gordon, E.N. Wilson, “The specrum of the Laplacian on Riemannian Heisenberg manifolds”, Mich. Math. J., 33 (1986), 253–332 | DOI | MR

[15] S. Helgason, Differential geometry and symmetric spaces, Academic press, New York, 2001 | MR

[16] C. Jang, T. Lee, K. Park, “Conjugate loci of 2-step nilpotent Lie groups satisfying $J_z^2=\langle Sz,z\rangle A$”, J. Korean Math. Soc., 45:6 (2008), 1705–1723 | DOI | MR

[17] A. Kaplan, “Riemannian nilmanifolds attached to Clifford modules”, Geom. Delicata, 11 (1981), 127–136 | MR

[18] D. Müller, M.M. Peloso, F. Ricci, “Eigenvalues of the Hodge Laplacian on the Heisenberg group”, Collectanea Mathematica, 57 (2006), 327–342 | MR

[19] W. Na, N. Pengcheng, L. Haifeng, “Dirichlet eigenvalue ratios for the p-sub-Laplacian in the Carnot group”, J. Part. Diff. Eq., 22 (2009), 1–10 | MR

[20] D. Widdows, Quaternionic algebraic geometry, PhD thesis, St Annes`s College, Oxford, UK, 2002

[21] M.B. Williams, “Explicit Ricci solitons on nilpotent Lie group”, Journal of Geometric Analysis, 2011, 1–26 | MR

[22] J.Y. Wu, “First eigenvalue monotonicity for the p-Laplace operator under the Ricci flow”, Acta mathematica Sinica, English series, 27:8 (2011), 1591–1598 | DOI | MR

[23] J.Y. Wu, E.M. Wang, Y. Zheng, “First eigenvalue of the p-Laplace operator along the Ricci flow”, Ann. Glob. Anal. Geom., 38 (2010), 27–55 | DOI | MR

[24] G. Xu, “Short-time existence of the Ricci flow on noncompact Riemannian manifolds”, Trans. Amer. Math. Soc., 365 (2013), 5605–5654 | DOI | MR