Deformation of spectrum and length spectrum on some compact nilmanifolds under the Ricci flow
Eurasian mathematical journal, Tome 9 (2018) no. 1, pp. 11-29

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we study the eigenvalue variations of Heisenberg and quaternion Lie groups under the Ricci flow and we investigate the deformation of some characteristics of compact nilmanifolds $\Gamma\setminus N$ under the Ricci flow, where $N$ is a simply connected $2$-step nilpotent Lie group with a left invariant metric and $\Gamma$ is a discrete cocompact subgroup of $N$, in particular Heisenberg and quaternion Lie groups.
@article{EMJ_2018_9_1_a1,
     author = {S. Azami and A. Razavi},
     title = {Deformation of spectrum and length spectrum on some compact nilmanifolds under the {Ricci} flow},
     journal = {Eurasian mathematical journal},
     pages = {11--29},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a1/}
}
TY  - JOUR
AU  - S. Azami
AU  - A. Razavi
TI  - Deformation of spectrum and length spectrum on some compact nilmanifolds under the Ricci flow
JO  - Eurasian mathematical journal
PY  - 2018
SP  - 11
EP  - 29
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a1/
LA  - en
ID  - EMJ_2018_9_1_a1
ER  - 
%0 Journal Article
%A S. Azami
%A A. Razavi
%T Deformation of spectrum and length spectrum on some compact nilmanifolds under the Ricci flow
%J Eurasian mathematical journal
%D 2018
%P 11-29
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a1/
%G en
%F EMJ_2018_9_1_a1
S. Azami; A. Razavi. Deformation of spectrum and length spectrum on some compact nilmanifolds under the Ricci flow. Eurasian mathematical journal, Tome 9 (2018) no. 1, pp. 11-29. http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a1/