Deformation of spectrum and length spectrum on some compact nilmanifolds under the Ricci flow
Eurasian mathematical journal, Tome 9 (2018) no. 1, pp. 11-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article we study the eigenvalue variations of Heisenberg and quaternion Lie groups under the Ricci flow and we investigate the deformation of some characteristics of compact nilmanifolds $\Gamma\setminus N$ under the Ricci flow, where $N$ is a simply connected $2$-step nilpotent Lie group with a left invariant metric and $\Gamma$ is a discrete cocompact subgroup of $N$, in particular Heisenberg and quaternion Lie groups.
@article{EMJ_2018_9_1_a1,
     author = {S. Azami and A. Razavi},
     title = {Deformation of spectrum and length spectrum on some compact nilmanifolds under the {Ricci} flow},
     journal = {Eurasian mathematical journal},
     pages = {11--29},
     year = {2018},
     volume = {9},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a1/}
}
TY  - JOUR
AU  - S. Azami
AU  - A. Razavi
TI  - Deformation of spectrum and length spectrum on some compact nilmanifolds under the Ricci flow
JO  - Eurasian mathematical journal
PY  - 2018
SP  - 11
EP  - 29
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a1/
LA  - en
ID  - EMJ_2018_9_1_a1
ER  - 
%0 Journal Article
%A S. Azami
%A A. Razavi
%T Deformation of spectrum and length spectrum on some compact nilmanifolds under the Ricci flow
%J Eurasian mathematical journal
%D 2018
%P 11-29
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a1/
%G en
%F EMJ_2018_9_1_a1
S. Azami; A. Razavi. Deformation of spectrum and length spectrum on some compact nilmanifolds under the Ricci flow. Eurasian mathematical journal, Tome 9 (2018) no. 1, pp. 11-29. http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a1/

[1] S. Azami, A. Razavi, “Ricci flow on quaternion Lie group”, Proceeding of 6th Seminar on Geometry and Topology (Iran, 2011), 177–180

[2] J. Berndt, F. Tricerri, L. Vanhecke, Generalized Heisenberg groups and Damek-Ricci harmonic spaces, Lecture Notes in Mathematics, 1598, Springer-Verlag, Berlin, 1995 | DOI | MR

[3] X.D. Cao, “First eigenvalue of geometric operators under the Ricci flow”, Proc. Amer. Math. Soc., 136 (2008), 4075–4078 | DOI | MR

[4] X.D. Cao, “Eigenvalues of $(-\Delta+\frac{R}2)$ on manifolds with nonnegetive curvature operator”, Math. Ann., 337 (2007), 435–441 | DOI | MR

[5] S.Y. Cheng, “Eigenfunctions and eigenvalues of Laplacian”, Differential Geometry, v. 2, Proc. Sympos. Pure Math., 27, AMS, Providence, Rhode Island, 1975, 185–193 | DOI | MR

[6] B. Chow, D. Knopf, The Ricci flow: an Introduction, Mathematical Surveys and Monographs, 110, AMS, 2004 | DOI | MR

[7] B. Chow, P. Lu, L. Ni, Hamilton's Ricci flow, Graduate Studies in Mathematics, 77, AMS, 2006 | DOI | MR

[8] D.M. DeTurck, “Deforming metrics in the direction of their Ricci tensors”, J. Differential Geometry, 18 (1983), 157–162 | DOI | MR

[9] P. Eberlein, “The geometry of 2-step nilpotent Lie groups with a left invariant metric”, Ann. Sci. Ecole Norm. Sup., 27:4 (1994), 611–660 | DOI | MR

[10] P. Eberlein, “Geometry of 2-step nilpotent groups with a left invariant metric”, Trans. Amer. Soc., 343:2 (1994), 805–828 | MR

[11] R. Gornet, M.B. Mast, “The length spectrum of Riemannian two-step nilmanifolds”, Ann. Sci. Ecole Norm. Sup., 4:2 (2000), 181–209 | DOI | MR

[12] R. Gornet, Y. Mao, “Geodesic conjugacies of two-step nilmanifolds”, Mich. Math. J., 45 (1998), 451–481 | DOI | MR

[13] C. Gordon, Y. Mao, “Comparisons of Laplace spectra, length spectra and geodesic flows of some Riemannian manifolds”, Mathematics Research Letters, 1 (1994), 677–688 | DOI | MR

[14] C. S. Gordon, E.N. Wilson, “The specrum of the Laplacian on Riemannian Heisenberg manifolds”, Mich. Math. J., 33 (1986), 253–332 | DOI | MR

[15] S. Helgason, Differential geometry and symmetric spaces, Academic press, New York, 2001 | MR

[16] C. Jang, T. Lee, K. Park, “Conjugate loci of 2-step nilpotent Lie groups satisfying $J_z^2=\langle Sz,z\rangle A$”, J. Korean Math. Soc., 45:6 (2008), 1705–1723 | DOI | MR

[17] A. Kaplan, “Riemannian nilmanifolds attached to Clifford modules”, Geom. Delicata, 11 (1981), 127–136 | MR

[18] D. Müller, M.M. Peloso, F. Ricci, “Eigenvalues of the Hodge Laplacian on the Heisenberg group”, Collectanea Mathematica, 57 (2006), 327–342 | MR

[19] W. Na, N. Pengcheng, L. Haifeng, “Dirichlet eigenvalue ratios for the p-sub-Laplacian in the Carnot group”, J. Part. Diff. Eq., 22 (2009), 1–10 | MR

[20] D. Widdows, Quaternionic algebraic geometry, PhD thesis, St Annes`s College, Oxford, UK, 2002

[21] M.B. Williams, “Explicit Ricci solitons on nilpotent Lie group”, Journal of Geometric Analysis, 2011, 1–26 | MR

[22] J.Y. Wu, “First eigenvalue monotonicity for the p-Laplace operator under the Ricci flow”, Acta mathematica Sinica, English series, 27:8 (2011), 1591–1598 | DOI | MR

[23] J.Y. Wu, E.M. Wang, Y. Zheng, “First eigenvalue of the p-Laplace operator along the Ricci flow”, Ann. Glob. Anal. Geom., 38 (2010), 27–55 | DOI | MR

[24] G. Xu, “Short-time existence of the Ricci flow on noncompact Riemannian manifolds”, Trans. Amer. Math. Soc., 365 (2013), 5605–5654 | DOI | MR