Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2017_8_4_a6, author = {F. Mukhamedov}, title = {On the uniform zero-two law for positive contractions of {Jordan} algebras}, journal = {Eurasian mathematical journal}, pages = {55--62}, publisher = {mathdoc}, volume = {8}, number = {4}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_4_a6/} }
F. Mukhamedov. On the uniform zero-two law for positive contractions of Jordan algebras. Eurasian mathematical journal, Tome 8 (2017) no. 4, pp. 55-62. http://geodesic.mathdoc.fr/item/EMJ_2017_8_4_a6/
[1] M. Akcoglu, J. Baxter, “Tail field representations and the zero-two law”, Israel J. Math., 123 (2001), 253–272 | DOI | MR
[2] Sh.A. Ayupov, “Ergodic theorems for Markov operators in Jordan algebras. II”, Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat., 5 (1982), 7–12 (in Russian) | MR
[3] Sh.A. Ayupov, “Statistical ergodic theorems in Jordan algebras”, Russian Math. Surveys, 36 (1981), 201–202 | DOI | MR
[4] Sh.A. Ayupov, Classification and representation of ordered Jordan algebras, Fan, Tashkent, 1985 (in Russian) | MR
[5] Sh.A. Ayupov, A. Rakhimov, Sh. Usmanov, Jordan, real and Lie structures in operator algebras, Kluwer Academic Publishers, Dordrecht, 1997 | MR
[6] O. Bratteli, D.W. Robinson, Operator algebras and quantum statistical mechanics, v. I, Springer-Verlag, New York–Heidelberg–Berlin, 1979 | MR
[7] Y. Derriennic, “Lois “zéro ou deux” pour les processes de Markov. Applications aux marches aléatoires”, Ann. Inst. H. Poincaré Sec. B, 12 (1976), 111–129 | MR
[8] E.Ya. Emel'yanov, Non-spectral asymptotic analysis of oneparameter operator semigroups, Operator Theory: Advances and Applications, 173, Birkhauser Verlag, Basel, 2007 | MR
[9] S.R. Foguel, “On the “zero-two” law”, Israel J. Math., 10 (1971), 275–280 | DOI | MR
[10] S.R. Foguel, “More on the “zero-two” law”, Proc. Amer. Math. Soc., 61 (1976), 262–264 | MR
[11] H. Hanche-Olsen, E. Stormer, Jordan operator algebras, Pitman Advanced Publs. Program, Boston, 1984 | MR
[12] R. Jajte, Strong linit theorems in non-commutative probability, Lecture Notes in Math, 1110, Springer-Verlag, Berlin–Heidelberg, 1984 | MR
[13] B. Jamison, S. Orey, “Markov chains recurrent in the sense of Harris”, Z. Wahrsch. Verw. Geb., 8 (1967), 41–48 | DOI | MR
[14] Y. Katznelson, L. Tzafriri, “On power bounded operators”, J. Funct. Anal., 68 (1986), 313–328 | DOI | MR
[15] M. Lin, “On the 0-2 law for conservative Markov operators”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 61 (1982), 513–525 | DOI | MR
[16] M. Lin, “The uniform zero-two law for positive operators in Banach lattices”, Studia Math., 131 (1998), 149–153 | DOI | MR
[17] F. Mukhamedov, “On dominant contractions and a generalization of the zero-two law”, Positivity, 15 (2011), 497–508 | DOI | MR
[18] F. Mukhamedov, “On a multi-parametric generalization of the uniform zero-two law in $L^1$-spaces”, Bull. Korean Math. Soc., 52 (2015), 1819–1826 | DOI | MR
[19] F. Mukhamedov, S. Temir, H. Akin, “A note on dominant contractions of Jordan algebras”, Turk. J. Math., 34 (2010), 85–93 | MR
[20] S. Neshveyev, L. Tuset, “The Martin boundary of a discrete quantum group”, J. Reine und Angewandte Math., 538 (2004), 23–70 | MR
[21] D. Ornstein, L. Sucheston, “An operator theorem on $L_1$ convergence to zero with applications to Markov operators”, Ann. Math. Statist., 41 (1971), 1631–1639 | DOI | MR
[22] F.W. Shultz, “On normed Jordan algebras which are Banach dual spaces”, J. Funct. Anal., 31 (1979), 360–376 | DOI | MR
[23] R. Wittmann, “Analogues of the “zero-two” law for positive linear contractions in $L_p$ and $C(X)$”, Israel J. Math., 59 (1987), 8–28 | DOI | MR
[24] R. Zaharopol, “On the “zero-two” law for positive contraction”, Proc. Edin. Math. Soc., 32 (1989), 363–370 | DOI | MR
[25] R. Zaharopol, “The modulus of a regular liniear operators and the “zero-two” law in $L_p$-spaces ($1
\infty$, $p\ne2$)”, J. Funct. Anal., 68 (1986), 300–312 | DOI | MR