On the uniform zero-two law for positive contractions of Jordan algebras
Eurasian mathematical journal, Tome 8 (2017) no. 4, pp. 55-62

Voir la notice de l'article provenant de la source Math-Net.Ru

Following an idea of Ornstein and Sucheston, Foguel proved the so-called uniform "zero-two" law: let $T:\ L^1(X,\mathcal{F}, \mu)\to L^1(X,\mathcal{F}, \mu)$ be a positive contraction. If for some $m\in\mathbb{N}\cup\{0\}$ one has $||T^{m+1}-T^m||2$, then $$ \lim_{n\to\infty}|| T^{m+1}-T^m||=0. $$ In this paper we prove a non-associative version of the unform "zero-two" law for positive contractions of $L_1$-spaces associated with $JBW$-algebras.
@article{EMJ_2017_8_4_a6,
     author = {F. Mukhamedov},
     title = {On the uniform zero-two law for positive contractions of {Jordan} algebras},
     journal = {Eurasian mathematical journal},
     pages = {55--62},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_4_a6/}
}
TY  - JOUR
AU  - F. Mukhamedov
TI  - On the uniform zero-two law for positive contractions of Jordan algebras
JO  - Eurasian mathematical journal
PY  - 2017
SP  - 55
EP  - 62
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2017_8_4_a6/
LA  - en
ID  - EMJ_2017_8_4_a6
ER  - 
%0 Journal Article
%A F. Mukhamedov
%T On the uniform zero-two law for positive contractions of Jordan algebras
%J Eurasian mathematical journal
%D 2017
%P 55-62
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2017_8_4_a6/
%G en
%F EMJ_2017_8_4_a6
F. Mukhamedov. On the uniform zero-two law for positive contractions of Jordan algebras. Eurasian mathematical journal, Tome 8 (2017) no. 4, pp. 55-62. http://geodesic.mathdoc.fr/item/EMJ_2017_8_4_a6/