On the uniform zero-two law for positive contractions of Jordan algebras
Eurasian mathematical journal, Tome 8 (2017) no. 4, pp. 55-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

Following an idea of Ornstein and Sucheston, Foguel proved the so-called uniform "zero-two" law: let $T:\ L^1(X,\mathcal{F}, \mu)\to L^1(X,\mathcal{F}, \mu)$ be a positive contraction. If for some $m\in\mathbb{N}\cup\{0\}$ one has $||T^{m+1}-T^m||2$, then $$ \lim_{n\to\infty}|| T^{m+1}-T^m||=0. $$ In this paper we prove a non-associative version of the unform "zero-two" law for positive contractions of $L_1$-spaces associated with $JBW$-algebras.
@article{EMJ_2017_8_4_a6,
     author = {F. Mukhamedov},
     title = {On the uniform zero-two law for positive contractions of {Jordan} algebras},
     journal = {Eurasian mathematical journal},
     pages = {55--62},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_4_a6/}
}
TY  - JOUR
AU  - F. Mukhamedov
TI  - On the uniform zero-two law for positive contractions of Jordan algebras
JO  - Eurasian mathematical journal
PY  - 2017
SP  - 55
EP  - 62
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2017_8_4_a6/
LA  - en
ID  - EMJ_2017_8_4_a6
ER  - 
%0 Journal Article
%A F. Mukhamedov
%T On the uniform zero-two law for positive contractions of Jordan algebras
%J Eurasian mathematical journal
%D 2017
%P 55-62
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2017_8_4_a6/
%G en
%F EMJ_2017_8_4_a6
F. Mukhamedov. On the uniform zero-two law for positive contractions of Jordan algebras. Eurasian mathematical journal, Tome 8 (2017) no. 4, pp. 55-62. http://geodesic.mathdoc.fr/item/EMJ_2017_8_4_a6/

[1] M. Akcoglu, J. Baxter, “Tail field representations and the zero-two law”, Israel J. Math., 123 (2001), 253–272 | DOI | MR

[2] Sh.A. Ayupov, “Ergodic theorems for Markov operators in Jordan algebras. II”, Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat., 5 (1982), 7–12 (in Russian) | MR

[3] Sh.A. Ayupov, “Statistical ergodic theorems in Jordan algebras”, Russian Math. Surveys, 36 (1981), 201–202 | DOI | MR

[4] Sh.A. Ayupov, Classification and representation of ordered Jordan algebras, Fan, Tashkent, 1985 (in Russian) | MR

[5] Sh.A. Ayupov, A. Rakhimov, Sh. Usmanov, Jordan, real and Lie structures in operator algebras, Kluwer Academic Publishers, Dordrecht, 1997 | MR

[6] O. Bratteli, D.W. Robinson, Operator algebras and quantum statistical mechanics, v. I, Springer-Verlag, New York–Heidelberg–Berlin, 1979 | MR

[7] Y. Derriennic, “Lois “zéro ou deux” pour les processes de Markov. Applications aux marches aléatoires”, Ann. Inst. H. Poincaré Sec. B, 12 (1976), 111–129 | MR

[8] E.Ya. Emel'yanov, Non-spectral asymptotic analysis of oneparameter operator semigroups, Operator Theory: Advances and Applications, 173, Birkhauser Verlag, Basel, 2007 | MR

[9] S.R. Foguel, “On the “zero-two” law”, Israel J. Math., 10 (1971), 275–280 | DOI | MR

[10] S.R. Foguel, “More on the “zero-two” law”, Proc. Amer. Math. Soc., 61 (1976), 262–264 | MR

[11] H. Hanche-Olsen, E. Stormer, Jordan operator algebras, Pitman Advanced Publs. Program, Boston, 1984 | MR

[12] R. Jajte, Strong linit theorems in non-commutative probability, Lecture Notes in Math, 1110, Springer-Verlag, Berlin–Heidelberg, 1984 | MR

[13] B. Jamison, S. Orey, “Markov chains recurrent in the sense of Harris”, Z. Wahrsch. Verw. Geb., 8 (1967), 41–48 | DOI | MR

[14] Y. Katznelson, L. Tzafriri, “On power bounded operators”, J. Funct. Anal., 68 (1986), 313–328 | DOI | MR

[15] M. Lin, “On the 0-2 law for conservative Markov operators”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 61 (1982), 513–525 | DOI | MR

[16] M. Lin, “The uniform zero-two law for positive operators in Banach lattices”, Studia Math., 131 (1998), 149–153 | DOI | MR

[17] F. Mukhamedov, “On dominant contractions and a generalization of the zero-two law”, Positivity, 15 (2011), 497–508 | DOI | MR

[18] F. Mukhamedov, “On a multi-parametric generalization of the uniform zero-two law in $L^1$-spaces”, Bull. Korean Math. Soc., 52 (2015), 1819–1826 | DOI | MR

[19] F. Mukhamedov, S. Temir, H. Akin, “A note on dominant contractions of Jordan algebras”, Turk. J. Math., 34 (2010), 85–93 | MR

[20] S. Neshveyev, L. Tuset, “The Martin boundary of a discrete quantum group”, J. Reine und Angewandte Math., 538 (2004), 23–70 | MR

[21] D. Ornstein, L. Sucheston, “An operator theorem on $L_1$ convergence to zero with applications to Markov operators”, Ann. Math. Statist., 41 (1971), 1631–1639 | DOI | MR

[22] F.W. Shultz, “On normed Jordan algebras which are Banach dual spaces”, J. Funct. Anal., 31 (1979), 360–376 | DOI | MR

[23] R. Wittmann, “Analogues of the “zero-two” law for positive linear contractions in $L_p$ and $C(X)$”, Israel J. Math., 59 (1987), 8–28 | DOI | MR

[24] R. Zaharopol, “On the “zero-two” law for positive contraction”, Proc. Edin. Math. Soc., 32 (1989), 363–370 | DOI | MR

[25] R. Zaharopol, “The modulus of a regular liniear operators and the “zero-two” law in $L_p$-spaces ($1

\infty$, $p\ne2$)”, J. Funct. Anal., 68 (1986), 300–312 | DOI | MR