On the uniform zero-two law for positive contractions of Jordan algebras
Eurasian mathematical journal, Tome 8 (2017) no. 4, pp. 55-62
Voir la notice de l'article provenant de la source Math-Net.Ru
Following an idea of Ornstein and Sucheston, Foguel proved the so-called uniform
"zero-two" law: let $T:\ L^1(X,\mathcal{F}, \mu)\to L^1(X,\mathcal{F}, \mu)$ be a positive contraction. If for some
$m\in\mathbb{N}\cup\{0\}$ one has $||T^{m+1}-T^m||2$, then
$$
\lim_{n\to\infty}|| T^{m+1}-T^m||=0.
$$
In this paper we prove a non-associative version of the unform "zero-two" law for positive
contractions of $L_1$-spaces associated with $JBW$-algebras.
@article{EMJ_2017_8_4_a6,
author = {F. Mukhamedov},
title = {On the uniform zero-two law for positive contractions of {Jordan} algebras},
journal = {Eurasian mathematical journal},
pages = {55--62},
publisher = {mathdoc},
volume = {8},
number = {4},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_4_a6/}
}
F. Mukhamedov. On the uniform zero-two law for positive contractions of Jordan algebras. Eurasian mathematical journal, Tome 8 (2017) no. 4, pp. 55-62. http://geodesic.mathdoc.fr/item/EMJ_2017_8_4_a6/