@article{EMJ_2017_8_4_a2,
author = {M. Al-Kaseasbeh and M. Darus},
title = {Inclusion and convolution properties of a certain class of analytic functions},
journal = {Eurasian mathematical journal},
pages = {11--17},
year = {2017},
volume = {8},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_4_a2/}
}
M. Al-Kaseasbeh; M. Darus. Inclusion and convolution properties of a certain class of analytic functions. Eurasian mathematical journal, Tome 8 (2017) no. 4, pp. 11-17. http://geodesic.mathdoc.fr/item/EMJ_2017_8_4_a2/
[1] M. Darus, K. Al-Shaqsi, “Difierential sandwich theorems with generalised derivative operator”, International Journal of Computational and Mathematical Sciences, 2:2 (2008), 75–78 | MR
[2] L. Fejer, “Uber die positivitat von summen die nach trigonometrischen oder Legendreschen funktionen fortschreiten, I”, Acta Szeged, 2 (1925), 75–86
[3] A.W. Goodman, Univalent functions, v. 2, Mariner Comp., Tempa, Florida, 1983 | MR
[4] M. Al-Kaseasbeh, M. Darus, “On an operator defined by the combination of both generalised operators of Salagean and Ruscheweyh”, Far East Journal of Mathematical Sciences, 97:4 (2015), 443–455 | DOI
[5] F.M. Al-Oboudi, “On univalent functions defined by a generalized Salagean operator”, International Journal of Mathematics and Mathematical Sciences, 27 (2004), 1429–1436 | DOI | MR
[6] S. Ruscheweyh, “New criteria for univalent functions”, Proceedings of the American Mathematical Society, 49:1 (1975), 109–115 | DOI | MR
[7] S. Ruscheweyh, T. Sheil-Small, “Hadamard products of Schlicht functions and the Polya-Schoenberg conjecture”, Commentarii Mathematici Helvetici, 48:1 (1973), 119–135 | DOI | MR
[8] G. S. Salagean, “Subclasses of univalent functions”, Complex Analysis, Fifth Romanian-Finnish Seminar, Springer, Berlin–Heidelberg, 1983, 362–372 | MR
[9] Z. Zhongzhu, S. Owa, “Convolution properties of a class of bounded analytic functions”, Bulletin of the Australian Mathematical Society, 45:1 (1992), 9–23 | DOI | MR