Inclusion and convolution properties of a certain class of analytic functions
Eurasian mathematical journal, Tome 8 (2017) no. 4, pp. 11-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, the class $\mathcal{R}^n(\lambda,\alpha,\beta,\gamma,\delta)$ of analytic functions defined by using the combination of generalised operators of Salagean and Ruscheweyh is introduced. Inclusion relations, convolution properties and other properties for the class $\mathcal{R}^n(\lambda,\alpha,\beta,\gamma,\delta)$ are given.
@article{EMJ_2017_8_4_a2,
     author = {M. Al-Kaseasbeh and M. Darus},
     title = {Inclusion and convolution properties of a certain class of analytic functions},
     journal = {Eurasian mathematical journal},
     pages = {11--17},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_4_a2/}
}
TY  - JOUR
AU  - M. Al-Kaseasbeh
AU  - M. Darus
TI  - Inclusion and convolution properties of a certain class of analytic functions
JO  - Eurasian mathematical journal
PY  - 2017
SP  - 11
EP  - 17
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2017_8_4_a2/
LA  - en
ID  - EMJ_2017_8_4_a2
ER  - 
%0 Journal Article
%A M. Al-Kaseasbeh
%A M. Darus
%T Inclusion and convolution properties of a certain class of analytic functions
%J Eurasian mathematical journal
%D 2017
%P 11-17
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2017_8_4_a2/
%G en
%F EMJ_2017_8_4_a2
M. Al-Kaseasbeh; M. Darus. Inclusion and convolution properties of a certain class of analytic functions. Eurasian mathematical journal, Tome 8 (2017) no. 4, pp. 11-17. http://geodesic.mathdoc.fr/item/EMJ_2017_8_4_a2/

[1] M. Darus, K. Al-Shaqsi, “Difierential sandwich theorems with generalised derivative operator”, International Journal of Computational and Mathematical Sciences, 2:2 (2008), 75–78 | MR

[2] L. Fejer, “Uber die positivitat von summen die nach trigonometrischen oder Legendreschen funktionen fortschreiten, I”, Acta Szeged, 2 (1925), 75–86

[3] A.W. Goodman, Univalent functions, v. 2, Mariner Comp., Tempa, Florida, 1983 | MR

[4] M. Al-Kaseasbeh, M. Darus, “On an operator defined by the combination of both generalised operators of Salagean and Ruscheweyh”, Far East Journal of Mathematical Sciences, 97:4 (2015), 443–455 | DOI

[5] F.M. Al-Oboudi, “On univalent functions defined by a generalized Salagean operator”, International Journal of Mathematics and Mathematical Sciences, 27 (2004), 1429–1436 | DOI | MR

[6] S. Ruscheweyh, “New criteria for univalent functions”, Proceedings of the American Mathematical Society, 49:1 (1975), 109–115 | DOI | MR

[7] S. Ruscheweyh, T. Sheil-Small, “Hadamard products of Schlicht functions and the Polya-Schoenberg conjecture”, Commentarii Mathematici Helvetici, 48:1 (1973), 119–135 | DOI | MR

[8] G. S. Salagean, “Subclasses of univalent functions”, Complex Analysis, Fifth Romanian-Finnish Seminar, Springer, Berlin–Heidelberg, 1983, 362–372 | MR

[9] Z. Zhongzhu, S. Owa, “Convolution properties of a class of bounded analytic functions”, Bulletin of the Australian Mathematical Society, 45:1 (1992), 9–23 | DOI | MR