Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2017_8_4_a11, author = {A. A. Vasil'eva}, title = {Estimates for the {Kolmogorov} widths of weighted {Sobolev} classes on a domain with cusp: case of weights that are functions of the distance from the boundary}, journal = {Eurasian mathematical journal}, pages = {102--106}, publisher = {mathdoc}, volume = {8}, number = {4}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_4_a11/} }
TY - JOUR AU - A. A. Vasil'eva TI - Estimates for the Kolmogorov widths of weighted Sobolev classes on a domain with cusp: case of weights that are functions of the distance from the boundary JO - Eurasian mathematical journal PY - 2017 SP - 102 EP - 106 VL - 8 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2017_8_4_a11/ LA - en ID - EMJ_2017_8_4_a11 ER -
%0 Journal Article %A A. A. Vasil'eva %T Estimates for the Kolmogorov widths of weighted Sobolev classes on a domain with cusp: case of weights that are functions of the distance from the boundary %J Eurasian mathematical journal %D 2017 %P 102-106 %V 8 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2017_8_4_a11/ %G en %F EMJ_2017_8_4_a11
A. A. Vasil'eva. Estimates for the Kolmogorov widths of weighted Sobolev classes on a domain with cusp: case of weights that are functions of the distance from the boundary. Eurasian mathematical journal, Tome 8 (2017) no. 4, pp. 102-106. http://geodesic.mathdoc.fr/item/EMJ_2017_8_4_a11/
[1] Proc. Steklov Inst. Math., 170 (1987), 11–31 | MR
[2] O.V. Besov, “Sobolev's embedding theorem for anisotropically irregular domains”, Eurasian Math. J., 2:1 (2011), 32–51 | MR
[3] O.V. Besov, “Kolmogorov widths of Sobolev classes on an irregular domain”, Orthogonal series, approximation theory and related questions, To the 60th birthday of academician Boris Sergeevich Kashin, Proc. Steklov Inst. Math., 280, no. 1, 2013, 34–45 | DOI | MR
[4] Comput. Math. Math. Phys., 38:1 (1998), 21–29 | MR
[5] I.V. Boykov, Optimal approximation and Kolmogorov widths estimates for certain singular classes related to equations of mathematical physics, arXiv: 1303.0416v1
[6] W.D. Evans, D.J. Harris, “Fractals, trees and the Neumann Laplacian”, Math. Ann., 296:3 (1993), 493–527 | DOI | MR
[7] W.D. Evans, D.J. Harris, Y. Saito, “On the approximation numbers of Sobolev embeddings on singular domains and trees”, Quart. J. Math., 55 (2004), 267–302 | DOI | MR
[8] P. Hajlasz, P. Koskela, “Isoperimetric inequalities and imbedding theorems in irregular domains”, J. London Math. Soc. (2), 58:2 (1998), 425–450 | DOI | MR
[9] T. Kilpeläinen, J. Malý, “Sobolev inequalities on sets with irregular boundaries”, Z. Anal. Anwendungen, 19:2 (2000), 369–380 | DOI | MR
[10] D.A. Labutin, “Integral representations of functions and embeddings of Sobolev spaces on cuspidal domains”, Math. Notes, 61:2 (1997), 164–179 | DOI | MR
[11] D.A. Labutin, “Embedding of Sobolev spaces on Hölder domains”, Investigations in the theory of differentiable functions of several variables and its applications, Proc. Steklov Inst. Math., 227, 1999, 163–172 | MR
[12] V.G. Maz'ya, S. V. Poborchi, “Imbedding theorems for Sobolev spaces on domains with peak and on Hölder domains”, St. Petersburg Math. J., 18:4 (2007), 583–605 | DOI | MR
[13] A. Pinkus, n-widths in approximation theory, Springer, Berlin, 1985, 291 pp. | MR
[14] V.M. Tikhomirov, Some questions in approximation theory, Moscow State University Publishing House, M., 1976, 304 pp. (Russian) | MR
[15] Analysis II, Encyclopaedia of Math. Sci., 14, 1990
[16] H. Triebel, Interpolation theory, function spaces, differential operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978, 528 pp. | MR
[17] A.A. Vasil'eva, “Widths of Sobolev weight classes on a domain with cusp”, Matem. Sbornik, 206:10 (2015), 37–70 | DOI | MR
[18] A.A. Vasil'eva, “Widths of function classes on sets with tree-like structure”, J. Appr. Theory, 192 (2015), 19–59 | DOI | MR