Third Hankel determinant for the reciprocals of bounded turning functions
Eurasian mathematical journal, Tome 8 (2017) no. 4, pp. 92-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

The objective of this paper is to introduce a certain new subclass of analytic functions and obtain an upper bound for the third Hankel determinant for the functions belonging to this class, using Toeplitz determinants.
@article{EMJ_2017_8_4_a10,
     author = {B. Venkateswarlu and D. Vamshee Krishna and N. Rani and T. RamReddy},
     title = {Third {Hankel} determinant for the reciprocals of bounded turning functions},
     journal = {Eurasian mathematical journal},
     pages = {92--101},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_4_a10/}
}
TY  - JOUR
AU  - B. Venkateswarlu
AU  - D. Vamshee Krishna
AU  - N. Rani
AU  - T. RamReddy
TI  - Third Hankel determinant for the reciprocals of bounded turning functions
JO  - Eurasian mathematical journal
PY  - 2017
SP  - 92
EP  - 101
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2017_8_4_a10/
LA  - en
ID  - EMJ_2017_8_4_a10
ER  - 
%0 Journal Article
%A B. Venkateswarlu
%A D. Vamshee Krishna
%A N. Rani
%A T. RamReddy
%T Third Hankel determinant for the reciprocals of bounded turning functions
%J Eurasian mathematical journal
%D 2017
%P 92-101
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2017_8_4_a10/
%G en
%F EMJ_2017_8_4_a10
B. Venkateswarlu; D. Vamshee Krishna; N. Rani; T. RamReddy. Third Hankel determinant for the reciprocals of bounded turning functions. Eurasian mathematical journal, Tome 8 (2017) no. 4, pp. 92-101. http://geodesic.mathdoc.fr/item/EMJ_2017_8_4_a10/

[1] R. M. Ali, “Coefficients of the inverse of strongly starlike functions”, Bull. Malays. Math. Sci. Soc., (second series), 26:1 (2003), 63–71 | MR

[2] K.O. Babalola, “On H$_3$(1) Hankel determinant for some classes of Univalent Functions”, Inequality Theory and Applications, 6 (2010), 1–7

[3] P.L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York, USA, 1983 | MR

[4] R. Ehrenborg, “The Hankel determinant of exponential polynomials”, Amer. Math. Monthly, 107:6 (2000), 557–560 | DOI | MR

[5] A.W. Goodman, Univalent functions, v. I, II, Mariner publishing Comp. Inc., Tampa, Florida, 1983 | MR

[6] U. Grenander, G. Szegö, Toeplitz forms and their applications, Second edition, Chelsea Publishing Co., New York, 1984 | MR

[7] W.K. Hayman, “On the Second Hankel determinant of mean univalent functions”, Proc. Lond. Math. Soc., 3 (1968), 77–94 | DOI | MR

[8] A. Janteng, S.A. Halim, M. Darus, “Coefficient inequality for a function whose derivative has a positive real part”, J. Inequal. Pure Appl. Math., 7:2 (2006), 1–5 | MR

[9] J.W. Layman, “The Hankel transform and some of its properties”, J. Integer Seq., 4:1 (2001), 1–11 | MR

[10] R.J. Libera, E.J. Zlotkiewicz, “Coefficient bounds for the inverse of a function with derivative in $\mathcal{P}$”, Proc. Amer. Math. Soc., 87:2 (1983), 251–257 | MR

[11] T.H. Mac Gregor, “Functions whose derivative have a positive real part”, Trans. Amer. Math. Soc., 104:3 (1962), 532–537 | DOI | MR

[12] K.I. Noor, “Hankel determinant problem for the class of functions with bounded boundary rotation”, Rev. Roum. Math. Pures Et Appl., 28:8 (1983), 731–739 | MR

[13] Ch. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, Gottingen, 1975 | MR

[14] Ch. Pommerenke, “On the coefficients and Hankel determinants of univalent functions”, J. Lond. Math. Soc., 41 (1966), 111–122 | DOI | MR

[15] B. Simon, Orthogonal polynomials on the unit circle, v. 1, AMS Colloquium Publ., 54, Classical theory, American Mathematicical Socety, Providence, RI, 2005 | MR