Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2017_8_4_a10, author = {B. Venkateswarlu and D. Vamshee Krishna and N. Rani and T. RamReddy}, title = {Third {Hankel} determinant for the reciprocals of bounded turning functions}, journal = {Eurasian mathematical journal}, pages = {92--101}, publisher = {mathdoc}, volume = {8}, number = {4}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_4_a10/} }
TY - JOUR AU - B. Venkateswarlu AU - D. Vamshee Krishna AU - N. Rani AU - T. RamReddy TI - Third Hankel determinant for the reciprocals of bounded turning functions JO - Eurasian mathematical journal PY - 2017 SP - 92 EP - 101 VL - 8 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2017_8_4_a10/ LA - en ID - EMJ_2017_8_4_a10 ER -
%0 Journal Article %A B. Venkateswarlu %A D. Vamshee Krishna %A N. Rani %A T. RamReddy %T Third Hankel determinant for the reciprocals of bounded turning functions %J Eurasian mathematical journal %D 2017 %P 92-101 %V 8 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2017_8_4_a10/ %G en %F EMJ_2017_8_4_a10
B. Venkateswarlu; D. Vamshee Krishna; N. Rani; T. RamReddy. Third Hankel determinant for the reciprocals of bounded turning functions. Eurasian mathematical journal, Tome 8 (2017) no. 4, pp. 92-101. http://geodesic.mathdoc.fr/item/EMJ_2017_8_4_a10/
[1] R. M. Ali, “Coefficients of the inverse of strongly starlike functions”, Bull. Malays. Math. Sci. Soc., (second series), 26:1 (2003), 63–71 | MR
[2] K.O. Babalola, “On H$_3$(1) Hankel determinant for some classes of Univalent Functions”, Inequality Theory and Applications, 6 (2010), 1–7
[3] P.L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York, USA, 1983 | MR
[4] R. Ehrenborg, “The Hankel determinant of exponential polynomials”, Amer. Math. Monthly, 107:6 (2000), 557–560 | DOI | MR
[5] A.W. Goodman, Univalent functions, v. I, II, Mariner publishing Comp. Inc., Tampa, Florida, 1983 | MR
[6] U. Grenander, G. Szegö, Toeplitz forms and their applications, Second edition, Chelsea Publishing Co., New York, 1984 | MR
[7] W.K. Hayman, “On the Second Hankel determinant of mean univalent functions”, Proc. Lond. Math. Soc., 3 (1968), 77–94 | DOI | MR
[8] A. Janteng, S.A. Halim, M. Darus, “Coefficient inequality for a function whose derivative has a positive real part”, J. Inequal. Pure Appl. Math., 7:2 (2006), 1–5 | MR
[9] J.W. Layman, “The Hankel transform and some of its properties”, J. Integer Seq., 4:1 (2001), 1–11 | MR
[10] R.J. Libera, E.J. Zlotkiewicz, “Coefficient bounds for the inverse of a function with derivative in $\mathcal{P}$”, Proc. Amer. Math. Soc., 87:2 (1983), 251–257 | MR
[11] T.H. Mac Gregor, “Functions whose derivative have a positive real part”, Trans. Amer. Math. Soc., 104:3 (1962), 532–537 | DOI | MR
[12] K.I. Noor, “Hankel determinant problem for the class of functions with bounded boundary rotation”, Rev. Roum. Math. Pures Et Appl., 28:8 (1983), 731–739 | MR
[13] Ch. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, Gottingen, 1975 | MR
[14] Ch. Pommerenke, “On the coefficients and Hankel determinants of univalent functions”, J. Lond. Math. Soc., 41 (1966), 111–122 | DOI | MR
[15] B. Simon, Orthogonal polynomials on the unit circle, v. 1, AMS Colloquium Publ., 54, Classical theory, American Mathematicical Socety, Providence, RI, 2005 | MR