On the number of non-real eigenvalues of the Sturm--Liouville problem
Eurasian mathematical journal, Tome 8 (2017) no. 3, pp. 77-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider a spectral problem for the Sturm–Liouville equation with a spectral parameter in a boundary conditions. It is shown that under certain assumptions on the coefficients of boundary conditions, problems of this type cannot have more than two non-real eigenvalues. Note that, in some special cases of boundary conditions, this kind of results have usually been obtained by using the results of the theory of Pontryagin spaces. The aim of this paper is to prove this result in a more general setting. Since the result was fairly predictable and could also be proved by using Pontryagin space methods, the author does not claim the absolute novelty of the obtained result but aims to provide an elementary proof, using only some facts of mathematical analysis and theory of ordinary differential equations, which, probably, will make the proof more accessible to a wide audience, especially to students.
@article{EMJ_2017_8_3_a8,
     author = {A. Sh. Shukurov},
     title = {On the number of non-real eigenvalues of the {Sturm--Liouville} problem},
     journal = {Eurasian mathematical journal},
     pages = {77--84},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a8/}
}
TY  - JOUR
AU  - A. Sh. Shukurov
TI  - On the number of non-real eigenvalues of the Sturm--Liouville problem
JO  - Eurasian mathematical journal
PY  - 2017
SP  - 77
EP  - 84
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a8/
LA  - en
ID  - EMJ_2017_8_3_a8
ER  - 
%0 Journal Article
%A A. Sh. Shukurov
%T On the number of non-real eigenvalues of the Sturm--Liouville problem
%J Eurasian mathematical journal
%D 2017
%P 77-84
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a8/
%G en
%F EMJ_2017_8_3_a8
A. Sh. Shukurov. On the number of non-real eigenvalues of the Sturm--Liouville problem. Eurasian mathematical journal, Tome 8 (2017) no. 3, pp. 77-84. http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a8/

[1] Y. N. Aliyev, “On the basis properties of root functions of Sturm–Liouville problems with affine boundary conditions”, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 26:4 (2006), 31–34 | MR | Zbl

[2] Z. S. Aliev, “On the basis properties of the root functions of a boundary value problem with a spectral parameter in the boundary conditions”, Dokl. Math., 87:2 (2013), 137–139 | DOI | MR | Zbl

[3] Z. S. Aliyev, E. A. Aghayev, “The basis properties of the system of root functions of Sturm-Liouville problem with spectral parameter in the boundary condition”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 32 (2010), 63–72 | MR | Zbl

[4] Z. S. Aliev, F. I. Allahverdi-zada, “Some spectral properties of the boundary value problem with spectral parameter in the boundary conditions”, Proc. Natl. Acad. Sci. NAS of Azerb., 41:2 (2015), 22–35 | MR

[5] Z. S. Aliyev, A. A. Dunyamaliyeva, “On defect basicity of the system of eigen functions of a spectral parameter with a spectral problem in the boundary conditions”, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. (Mathematics and Mechanics), 32:4 (2012), 21–28 | MR | Zbl

[6] Z. S. Aliev, A. A. Dunyamalieva, “Basis properties of root functions of the Sturm-Liouville problem with a spectral parameter in the boundary conditions”, Dokl. Math., 88:1 (2013), 441–445 | DOI | MR | Zbl

[7] Z. S. Aliev, A. A. Dunyamalieva, “Defect basis property of a system of root functions of a Sturm–Liouville problem with spectral parameter in the boundary conditions”, Differ. Equ., 51:10 (2015), 1249–1266 | DOI | MR | Zbl

[8] T. Ya. Azizov, I. S. Iokhvidov, “Linear operators in Hilbert spaces with G-Metric”, Uspekhi Mat. Nauk, 26:4 (1971), 43–92 (in Russian) | MR | Zbl

[9] Zh. Ben Amara, “Asymptotics of eigenvalues and eigenfunctions of the Sturma-Liouville problem with a small parameter and a spectral parameter in the boundary condition”, Math. Notes, 60 (1996), 456–458 | DOI | MR | Zbl

[10] Zh. Ben Amara, A. A. Shkalikov, “The Sturm–Liouville problem with physical and spectral parameters in the boundary condition”, Math. Notes, 66 (1999), 127–134 | DOI | MR | Zbl

[11] P. A. Binding, P. J. Browne, “Application of two parameter eigencurves to Sturm–Liouville problems with eigenparameter-dependent boundary conditions”, Proc. R. Soc. Edinburgh A, 125 (1995), 1205–1218 | DOI | MR | Zbl

[12] P. A. Binding, P. J. Browne, “Oscillation theory for indefinite Sturma–Liouville problems with eigenparameter-dependent boundary conditions”, Proc. R. Soc. Edinburgh A, 127 (1997), 1123–1136 | DOI | MR | Zbl

[13] P. A. Binding, P. J. Browne, K. Seddighi, “Sturm–Liouville problems with eigenparameter dependen boundary conditions”, Proc. Edinburgh Math. Soc., 37 (1993), 57–72 | DOI | MR

[14] A. A. Dunyamaliyeva, “Some spectral properties of the boundary value problem with spectral parameter in the boundary conditions”, Proc. Natl. Acad. Sci. NAS of Azerb., 40:2 (2014), 52–64 | MR

[15] C. T. Fulton, “Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions”, Proc. R. Soc. Edinburgh A, 77 (1977), 293–308 | DOI | MR | Zbl

[16] N. J. Guliyev, “Inverse eigenvalue problems for Sturm–Liouville equations with spectral parameter linearly contained in one of the boundary conditions”, Inverse Problems, 21:4 (2005), 1315–1330 | DOI | MR | Zbl

[17] N. Yu. Kapustin, “Oscillation properties of solutions to a nonselfadjoint spectral problem with spectral parameter in the boundary condition”, Differ. Eqns., 35 (1999), 1031–1034 | MR | Zbl

[18] N. Yu. Kapustin, “On a spectral problem that arises in a mathematical model of the process of torsional vibrations of a rod with pulleys at the ends”, Differ. Uravn., 41:10 (2005), 1413–1415 (in Russian) | MR | Zbl

[19] N. Yu. Kapustin, E. I. Moiseev, “Spectral problems with the spectral parameter in the boundary condition”, Differ. Eqns., 33 (1997), 116–120 | MR | Zbl

[20] N. Yu. Kapustin, E. I. Moiseev, “A remark on the convergence problem for spectral expansions corresponding to a classical problem with spectral parameter in the boundary condition”, Differ. Eqns., 37 (2001), 1677–1683 | DOI | MR | Zbl

[21] N. B. Kerimov, T. I. Allahverdiyev, “On a boundary value problem. I”, Diff. Uravn., 29:1 (1993), 54–60 (in Russian) | Zbl

[22] N. B. Kerimov, V. S. Mirzoev, “On the basis properties of one spectral problem with a spectral parameter in a boundary condition”, Siberian Math. J., 44 (2003), 813–816 | DOI | MR | Zbl

[23] N. B. Kerimov, R. G. Poladov, “On basicity in $L_p(0, 1)$, $1 p \infty$, of the system of eigenfunctions of one boundary value problem I”, Proc. IMM NAS Azerb., 22 (2005), 53–64 | MR | Zbl

[24] N. B. Kerimov, R. G. Poladov, “Basis properties of the system of eigenfunctions in the Sturm–Liouville problem with a spectral parameter in the boundary conditions”, Doklady Mathematics, 85:1 (2012), 8–13 | DOI | MR | Zbl

[25] R. G. Poladov, “On the basis properties in the space $L_p(0, 1)$, $1 p \infty$ of the system of eigenfunctions of Sturm–Liouville problem with a spectral parameter in boundary counditions”, Trans. NAS Azerb., ser. phys.-tech. math. sci., math. mech., 32:4 (2012), 87–94 | MR | Zbl

[26] L. S. Pontryagin, “Hermitian operators in a space with indefinite metric”, Izv. Akad. Nauk SSSR Ser. Mat., 8 (1944), 243–280 | MR | Zbl

[27] E. M. Roussakovsky, “Operator treatment of a boundary value problem with a spectral parameter polynomially contained in the boundary conditions”, Funksional analiz i ego prilozhenia, 9:4 (1979), 91–92 (in Russian)

[28] A. Schneider, “A note on eigenvalue problems with eigenvalue parameter in the boundary condition”, Math. Z., 136 (1974), 163–167 | DOI | MR | Zbl

[29] J. Walter, “Regular eigenvalue problems with eigenvalue parameter in the boundary condition”, Math. Z., 13 (1973), 301–312 | DOI | MR

[30] S. D. Wray, “Absolutely convergent expansions associated with a boundary-value problem with the eigenvalue parameter contained in one boundary condition”, Czech. Math. J., 32 (1982), 608–622 | MR | Zbl