Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2017_8_3_a8, author = {A. Sh. Shukurov}, title = {On the number of non-real eigenvalues of the {Sturm--Liouville} problem}, journal = {Eurasian mathematical journal}, pages = {77--84}, publisher = {mathdoc}, volume = {8}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a8/} }
A. Sh. Shukurov. On the number of non-real eigenvalues of the Sturm--Liouville problem. Eurasian mathematical journal, Tome 8 (2017) no. 3, pp. 77-84. http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a8/
[1] Y. N. Aliyev, “On the basis properties of root functions of Sturm–Liouville problems with affine boundary conditions”, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 26:4 (2006), 31–34 | MR | Zbl
[2] Z. S. Aliev, “On the basis properties of the root functions of a boundary value problem with a spectral parameter in the boundary conditions”, Dokl. Math., 87:2 (2013), 137–139 | DOI | MR | Zbl
[3] Z. S. Aliyev, E. A. Aghayev, “The basis properties of the system of root functions of Sturm-Liouville problem with spectral parameter in the boundary condition”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 32 (2010), 63–72 | MR | Zbl
[4] Z. S. Aliev, F. I. Allahverdi-zada, “Some spectral properties of the boundary value problem with spectral parameter in the boundary conditions”, Proc. Natl. Acad. Sci. NAS of Azerb., 41:2 (2015), 22–35 | MR
[5] Z. S. Aliyev, A. A. Dunyamaliyeva, “On defect basicity of the system of eigen functions of a spectral parameter with a spectral problem in the boundary conditions”, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. (Mathematics and Mechanics), 32:4 (2012), 21–28 | MR | Zbl
[6] Z. S. Aliev, A. A. Dunyamalieva, “Basis properties of root functions of the Sturm-Liouville problem with a spectral parameter in the boundary conditions”, Dokl. Math., 88:1 (2013), 441–445 | DOI | MR | Zbl
[7] Z. S. Aliev, A. A. Dunyamalieva, “Defect basis property of a system of root functions of a Sturm–Liouville problem with spectral parameter in the boundary conditions”, Differ. Equ., 51:10 (2015), 1249–1266 | DOI | MR | Zbl
[8] T. Ya. Azizov, I. S. Iokhvidov, “Linear operators in Hilbert spaces with G-Metric”, Uspekhi Mat. Nauk, 26:4 (1971), 43–92 (in Russian) | MR | Zbl
[9] Zh. Ben Amara, “Asymptotics of eigenvalues and eigenfunctions of the Sturma-Liouville problem with a small parameter and a spectral parameter in the boundary condition”, Math. Notes, 60 (1996), 456–458 | DOI | MR | Zbl
[10] Zh. Ben Amara, A. A. Shkalikov, “The Sturm–Liouville problem with physical and spectral parameters in the boundary condition”, Math. Notes, 66 (1999), 127–134 | DOI | MR | Zbl
[11] P. A. Binding, P. J. Browne, “Application of two parameter eigencurves to Sturm–Liouville problems with eigenparameter-dependent boundary conditions”, Proc. R. Soc. Edinburgh A, 125 (1995), 1205–1218 | DOI | MR | Zbl
[12] P. A. Binding, P. J. Browne, “Oscillation theory for indefinite Sturma–Liouville problems with eigenparameter-dependent boundary conditions”, Proc. R. Soc. Edinburgh A, 127 (1997), 1123–1136 | DOI | MR | Zbl
[13] P. A. Binding, P. J. Browne, K. Seddighi, “Sturm–Liouville problems with eigenparameter dependen boundary conditions”, Proc. Edinburgh Math. Soc., 37 (1993), 57–72 | DOI | MR
[14] A. A. Dunyamaliyeva, “Some spectral properties of the boundary value problem with spectral parameter in the boundary conditions”, Proc. Natl. Acad. Sci. NAS of Azerb., 40:2 (2014), 52–64 | MR
[15] C. T. Fulton, “Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions”, Proc. R. Soc. Edinburgh A, 77 (1977), 293–308 | DOI | MR | Zbl
[16] N. J. Guliyev, “Inverse eigenvalue problems for Sturm–Liouville equations with spectral parameter linearly contained in one of the boundary conditions”, Inverse Problems, 21:4 (2005), 1315–1330 | DOI | MR | Zbl
[17] N. Yu. Kapustin, “Oscillation properties of solutions to a nonselfadjoint spectral problem with spectral parameter in the boundary condition”, Differ. Eqns., 35 (1999), 1031–1034 | MR | Zbl
[18] N. Yu. Kapustin, “On a spectral problem that arises in a mathematical model of the process of torsional vibrations of a rod with pulleys at the ends”, Differ. Uravn., 41:10 (2005), 1413–1415 (in Russian) | MR | Zbl
[19] N. Yu. Kapustin, E. I. Moiseev, “Spectral problems with the spectral parameter in the boundary condition”, Differ. Eqns., 33 (1997), 116–120 | MR | Zbl
[20] N. Yu. Kapustin, E. I. Moiseev, “A remark on the convergence problem for spectral expansions corresponding to a classical problem with spectral parameter in the boundary condition”, Differ. Eqns., 37 (2001), 1677–1683 | DOI | MR | Zbl
[21] N. B. Kerimov, T. I. Allahverdiyev, “On a boundary value problem. I”, Diff. Uravn., 29:1 (1993), 54–60 (in Russian) | Zbl
[22] N. B. Kerimov, V. S. Mirzoev, “On the basis properties of one spectral problem with a spectral parameter in a boundary condition”, Siberian Math. J., 44 (2003), 813–816 | DOI | MR | Zbl
[23] N. B. Kerimov, R. G. Poladov, “On basicity in $L_p(0, 1)$, $1 p \infty$, of the system of eigenfunctions of one boundary value problem I”, Proc. IMM NAS Azerb., 22 (2005), 53–64 | MR | Zbl
[24] N. B. Kerimov, R. G. Poladov, “Basis properties of the system of eigenfunctions in the Sturm–Liouville problem with a spectral parameter in the boundary conditions”, Doklady Mathematics, 85:1 (2012), 8–13 | DOI | MR | Zbl
[25] R. G. Poladov, “On the basis properties in the space $L_p(0, 1)$, $1 p \infty$ of the system of eigenfunctions of Sturm–Liouville problem with a spectral parameter in boundary counditions”, Trans. NAS Azerb., ser. phys.-tech. math. sci., math. mech., 32:4 (2012), 87–94 | MR | Zbl
[26] L. S. Pontryagin, “Hermitian operators in a space with indefinite metric”, Izv. Akad. Nauk SSSR Ser. Mat., 8 (1944), 243–280 | MR | Zbl
[27] E. M. Roussakovsky, “Operator treatment of a boundary value problem with a spectral parameter polynomially contained in the boundary conditions”, Funksional analiz i ego prilozhenia, 9:4 (1979), 91–92 (in Russian)
[28] A. Schneider, “A note on eigenvalue problems with eigenvalue parameter in the boundary condition”, Math. Z., 136 (1974), 163–167 | DOI | MR | Zbl
[29] J. Walter, “Regular eigenvalue problems with eigenvalue parameter in the boundary condition”, Math. Z., 13 (1973), 301–312 | DOI | MR
[30] S. D. Wray, “Absolutely convergent expansions associated with a boundary-value problem with the eigenvalue parameter contained in one boundary condition”, Czech. Math. J., 32 (1982), 608–622 | MR | Zbl