On fixed points of contraction maps acting in $(q_1, q_2)$-quasimetric spaces and geometric properties of these spaces
Eurasian mathematical journal, Tome 8 (2017) no. 3, pp. 70-76
Voir la notice de l'article provenant de la source Math-Net.Ru
We study geometric properties of $(q_1, q_2)$-quasimetric spaces and fixed point theorems in these spaces. In paper [1], a fixed point theorem was obtained for a contraction map acting in a complete $(q_1, q_2)$-quasimetric space. The graph of the map was assumed to be closed. In this paper, we show that this assumption is essential, i.e. we provide an example of a complete quasimetric space and a contraction map acting in it whose graph is not closed and which is fixed-point-free. We also describe some geometric properties of such spaces.
@article{EMJ_2017_8_3_a7,
author = {R. Sengupta},
title = {On fixed points of contraction maps acting in $(q_1, q_2)$-quasimetric spaces and geometric properties of these spaces},
journal = {Eurasian mathematical journal},
pages = {70--76},
publisher = {mathdoc},
volume = {8},
number = {3},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a7/}
}
TY - JOUR AU - R. Sengupta TI - On fixed points of contraction maps acting in $(q_1, q_2)$-quasimetric spaces and geometric properties of these spaces JO - Eurasian mathematical journal PY - 2017 SP - 70 EP - 76 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a7/ LA - en ID - EMJ_2017_8_3_a7 ER -
%0 Journal Article %A R. Sengupta %T On fixed points of contraction maps acting in $(q_1, q_2)$-quasimetric spaces and geometric properties of these spaces %J Eurasian mathematical journal %D 2017 %P 70-76 %V 8 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a7/ %G en %F EMJ_2017_8_3_a7
R. Sengupta. On fixed points of contraction maps acting in $(q_1, q_2)$-quasimetric spaces and geometric properties of these spaces. Eurasian mathematical journal, Tome 8 (2017) no. 3, pp. 70-76. http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a7/