On the uniform convergence of Fourier series on a closed domain
Eurasian mathematical journal, Tome 8 (2017) no. 3, pp. 60-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

The uniform convergence on a closed domain is studied of eigenfunction expansions of continuous functions belonging to function spaces with mixed norm.
@article{EMJ_2017_8_3_a6,
     author = {A. A. Rakhimov},
     title = {On the uniform convergence of {Fourier} series on a closed domain},
     journal = {Eurasian mathematical journal},
     pages = {60--69},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a6/}
}
TY  - JOUR
AU  - A. A. Rakhimov
TI  - On the uniform convergence of Fourier series on a closed domain
JO  - Eurasian mathematical journal
PY  - 2017
SP  - 60
EP  - 69
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a6/
LA  - en
ID  - EMJ_2017_8_3_a6
ER  - 
%0 Journal Article
%A A. A. Rakhimov
%T On the uniform convergence of Fourier series on a closed domain
%J Eurasian mathematical journal
%D 2017
%P 60-69
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a6/
%G en
%F EMJ_2017_8_3_a6
A. A. Rakhimov. On the uniform convergence of Fourier series on a closed domain. Eurasian mathematical journal, Tome 8 (2017) no. 3, pp. 60-69. http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a6/

[1] Sh. A. Alimov, V. A. Il'in, E. M. Nikishin, “Convergence problems of multiple trigonometric series and spectral decompositions. I”, Uspekhi Mat. Nauk, 31:6(192) (1976), 28–83 | MR | Zbl

[2] Sh. A. Alimov, “On the spectral expansions of continuous functions from the Sobolev spaces”, Doklady AN SSSR, 229:3 (1976), 529–530 | MR | Zbl

[3] Sh. A. Alimov, “On expanding continuous functions from Sobolev classes in eigenfunctions of Laplace operator”, Sib. Math. Zh., 19:1 (1978), 721–734 | MR | Zbl

[4] Sh. A. Alimov, “On spectral decompositions of functions in $H_p^\alpha$”, Math. Sbornik, USSR, 101:1 (1976), 3–20 | MR | Zbl

[5] Sh. A. Alimov, A. A. Rakhimov, “On the uniformly convergence of spectral expansions in a closed domain”, Dokl. Acad Nauk UzSSR, 10 (1986), 5–7 | MR | Zbl

[6] G. I. Eskin, “Asymptotic near the boundary of spectral functions of elliptic self-adjoin boundary problems”, Izrael J. Math., 22:3–4 (1975), 214–246 | DOI | MR

[7] V. A. Il'in, E. I. Moiseev, “On spectral expansions connected with with non-negative self-adjoin extension of the second order elliptic operator”, Doklady Akademii Nauk SSSR, 191:4 (1971), 770–772

[8] V. A. Il'in, Sh. A. Alimov, “The conditions for convergence of the spectral expansions, related to self adjoint extensions of the elliptic operators”, Differential Equations, 7:4 (1971), 670–710 | Zbl

[9] V. A. Il'in, Spectral theory of the differential operators, Nauka, M., 1991, 369 pp. (in Russian) | MR

[10] V. A. Il'in, “On the uniformly convergence eigenfunction expansions associated with Laplace operator in a closed domain”, Mat. Sbornic, 45:2 (1958), 195–232 | Zbl

[11] N. N. Kozlova, “On the Riesz summability of continuous functions from the Nikolsky spaces”, J. Differential equation, 20:1 (1984), 46–56 | MR | Zbl

[12] E. I. Moiseev, “The uniform convergence of certain expansions in a closed domain”, Dokl. Akad. Nauk SSSR, 233:6 (1977), 1042–1045 | MR | Zbl

[13] A. A. Rakhimov, “On uniform convergence of spectral resolutions of a continuous function in a closed domain”, J. Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk, 6 (1987), 17–22 | MR | Zbl

[14] A. A. Rakhimov, On the uniform convergence of spectral expansions of continuous functions from the Nikolsky space in the closed domain, Dep. VINITI. 1564-B87, 1987, 18 pp. | MR

[15] V. G. Sozanov, “Uniform convergence and Riesz summability of spectral resolutions”, J. Mat. Zametki, 29:6 (1981), 887–894 | MR | Zbl

[16] E. I. Titchmarsh, Decomposition by eigenvalues, related to differential equations of second order, v. 2, Instr. Liter., M., 1961, 555 pp.