Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2017_8_3_a6, author = {A. A. Rakhimov}, title = {On the uniform convergence of {Fourier} series on a closed domain}, journal = {Eurasian mathematical journal}, pages = {60--69}, publisher = {mathdoc}, volume = {8}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a6/} }
A. A. Rakhimov. On the uniform convergence of Fourier series on a closed domain. Eurasian mathematical journal, Tome 8 (2017) no. 3, pp. 60-69. http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a6/
[1] Sh. A. Alimov, V. A. Il'in, E. M. Nikishin, “Convergence problems of multiple trigonometric series and spectral decompositions. I”, Uspekhi Mat. Nauk, 31:6(192) (1976), 28–83 | MR | Zbl
[2] Sh. A. Alimov, “On the spectral expansions of continuous functions from the Sobolev spaces”, Doklady AN SSSR, 229:3 (1976), 529–530 | MR | Zbl
[3] Sh. A. Alimov, “On expanding continuous functions from Sobolev classes in eigenfunctions of Laplace operator”, Sib. Math. Zh., 19:1 (1978), 721–734 | MR | Zbl
[4] Sh. A. Alimov, “On spectral decompositions of functions in $H_p^\alpha$”, Math. Sbornik, USSR, 101:1 (1976), 3–20 | MR | Zbl
[5] Sh. A. Alimov, A. A. Rakhimov, “On the uniformly convergence of spectral expansions in a closed domain”, Dokl. Acad Nauk UzSSR, 10 (1986), 5–7 | MR | Zbl
[6] G. I. Eskin, “Asymptotic near the boundary of spectral functions of elliptic self-adjoin boundary problems”, Izrael J. Math., 22:3–4 (1975), 214–246 | DOI | MR
[7] V. A. Il'in, E. I. Moiseev, “On spectral expansions connected with with non-negative self-adjoin extension of the second order elliptic operator”, Doklady Akademii Nauk SSSR, 191:4 (1971), 770–772
[8] V. A. Il'in, Sh. A. Alimov, “The conditions for convergence of the spectral expansions, related to self adjoint extensions of the elliptic operators”, Differential Equations, 7:4 (1971), 670–710 | Zbl
[9] V. A. Il'in, Spectral theory of the differential operators, Nauka, M., 1991, 369 pp. (in Russian) | MR
[10] V. A. Il'in, “On the uniformly convergence eigenfunction expansions associated with Laplace operator in a closed domain”, Mat. Sbornic, 45:2 (1958), 195–232 | Zbl
[11] N. N. Kozlova, “On the Riesz summability of continuous functions from the Nikolsky spaces”, J. Differential equation, 20:1 (1984), 46–56 | MR | Zbl
[12] E. I. Moiseev, “The uniform convergence of certain expansions in a closed domain”, Dokl. Akad. Nauk SSSR, 233:6 (1977), 1042–1045 | MR | Zbl
[13] A. A. Rakhimov, “On uniform convergence of spectral resolutions of a continuous function in a closed domain”, J. Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk, 6 (1987), 17–22 | MR | Zbl
[14] A. A. Rakhimov, On the uniform convergence of spectral expansions of continuous functions from the Nikolsky space in the closed domain, Dep. VINITI. 1564-B87, 1987, 18 pp. | MR
[15] V. G. Sozanov, “Uniform convergence and Riesz summability of spectral resolutions”, J. Mat. Zametki, 29:6 (1981), 887–894 | MR | Zbl
[16] E. I. Titchmarsh, Decomposition by eigenvalues, related to differential equations of second order, v. 2, Instr. Liter., M., 1961, 555 pp.