@article{EMJ_2017_8_3_a5,
author = {N. L. Gol'dman},
title = {Investigation of mathematical models of one-phase {Stefan} problems with unknown nonlinear coefficients},
journal = {Eurasian mathematical journal},
pages = {48--59},
year = {2017},
volume = {8},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a5/}
}
N. L. Gol'dman. Investigation of mathematical models of one-phase Stefan problems with unknown nonlinear coefficients. Eurasian mathematical journal, Tome 8 (2017) no. 3, pp. 48-59. http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a5/
[1] N. Zabaras, Y. Ruan, “A deforming finite element method analysis of inverse Stefan problem”, Int. J. Numer. Meth. Eng., 28 (1989), 295–313 | DOI | MR | Zbl
[2] Y. Rabin, A. Shitzer, “Combined solution of the inverse Stefan problem for successive freezing-thawing in nonideal biological tissues”, J. Biomech. Eng. Trans. ASME, 119 (1997), 146–152 | DOI
[3] A. El. Badia, F. Moutazaim, “A one-phase inverse Stefan problem”, Inverse Probl., 15:6 (1999), 1507–1522 | DOI | MR | Zbl
[4] H.-W. Engl, “Identification of heat transfer functions in continuous casting of steel by regularization”, Inverse and Ill-Posed Probl., 8 (2000), 677–693 | MR | Zbl
[5] B. Furenes, B. Lie, “Solidification and control of a liquid metal column”, Simulation Model. Practic and Theory., 14:8 (2006), 1112–1120 | DOI
[6] D. Slota, “Homotopy perturbation method for solving the two-phase inverse Stefan problem”, Numer. Heat Transfer Part A, 59:10 (2011), 755–768 | DOI
[7] B. T. Johansson, D. Lesnic, T. Reeve, “A method of fundamental solutions for one-dimensional inverse Stefan problem”, Appl. Math. Model., 35:9 (2011), 4367–4378 | DOI | MR | Zbl
[8] N. N. Salva, D. A. Tarzia, “Simultaneous determination of unknown coefficients through a phase-change process with temperature-dependent thermal conductivity”, J.P. J. Heat Mass Transfer, 5:1 (2011), 11–39 | MR | Zbl
[9] N. L. Gol'dman, Inverse Stefan problems, Kluwer Academic, Dordrecht, 1997 | MR | Zbl
[10] N. L. Gol'dman, “Properties of solutions of the inverse Stefan problem”, Diff. Equations, 39:1 (2003), 66–72 | DOI | MR | Zbl
[11] N. L. Gol'dman, “One-phase inverse Stefan problems with unknown nonlinear sources”, Diff. Equations, 49:6 (2013), 680–687 | DOI | MR | Zbl
[12] N. L. Gol'dman, “Properties of solutions of parabolic equations with unknown coeffcients”, Diff. Equations, 47:1 (2011), 60–68 | DOI | Zbl
[13] M. Lees, M. H. Protter, “Unique continuation for parabolic differential equations and inequalities”, Duke Math. J., 28 (1961), 369–383 | DOI | MR
[14] A. Friedman, Partial differential equations of parabolic type, Prentice Hall, Englewood Cliffs, N.J., 1964 ; Mir, M., 1968 (in Russian) | MR | Zbl | Zbl
[15] Am. Math. Soc., Providence, R.I., 1968 | Zbl