Net spaces on lattices, Hardy--Littlewood type inequalities, and their converses
Eurasian mathematical journal, Tome 8 (2017) no. 3, pp. 10-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce abstract net spaces on directed sets and prove their embedding and interpolation properties. Typical examples of interest are lattices of irreducible unitary representations of compact Lie groups and of class I representations with respect to a subgroup. As an application, we prove Hardy–Littlewood type inequalities and their converses on compact Lie groups and on compact homogeneous manifolds.
@article{EMJ_2017_8_3_a2,
     author = {R. Akylzhanov and M. Ruzhansky},
     title = {Net spaces on lattices, {Hardy--Littlewood} type inequalities, and their converses},
     journal = {Eurasian mathematical journal},
     pages = {10--27},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a2/}
}
TY  - JOUR
AU  - R. Akylzhanov
AU  - M. Ruzhansky
TI  - Net spaces on lattices, Hardy--Littlewood type inequalities, and their converses
JO  - Eurasian mathematical journal
PY  - 2017
SP  - 10
EP  - 27
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a2/
LA  - en
ID  - EMJ_2017_8_3_a2
ER  - 
%0 Journal Article
%A R. Akylzhanov
%A M. Ruzhansky
%T Net spaces on lattices, Hardy--Littlewood type inequalities, and their converses
%J Eurasian mathematical journal
%D 2017
%P 10-27
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a2/
%G en
%F EMJ_2017_8_3_a2
R. Akylzhanov; M. Ruzhansky. Net spaces on lattices, Hardy--Littlewood type inequalities, and their converses. Eurasian mathematical journal, Tome 8 (2017) no. 3, pp. 10-27. http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a2/

[1] R. Akylzhanov, E. Nursultanov, M. Ruzhansky, Hardy–Littlewood–Paley inequalities on compact homogeneous manifolds, 2015, arXiv: 1504.07043 | MR

[2] R. Akylzhanov, E. Nursultanov, M. Ruzhansky, “Hardy–Littlewood inequalities and Fourier multipliers on $SU(2)$”, Studia Math., 234 (2016), 1–29 | DOI | MR | Zbl

[3] R. Akylzhanov, E. Nursultanov, M. Ruzhansky, “Hardy–Littlewood–Paley type inequalities on compact Lie groups”, Math. Notes, 100 (2016), 287–290 | DOI | MR | Zbl

[4] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, 223, Springer-Verlag, Berlin–New York, 1976 | DOI | MR | Zbl

[5] C. Bennett, R. Sharpley, Interpolation of operators, Pure and Applied Mathematics, 129, Academic Press, Inc., Boston, MA, 1988 | MR | Zbl

[6] A. Dasgupta, M. Ruzhansky, “Gevrey functions and ultradistributions on compact Lie groups and homogeneous spaces”, Bull. Sci. Math., 138:6 (2014), 756–782 | DOI | MR | Zbl

[7] L. Grafakos, Classical Fourier analysis, Graduate Texts in Mathematics, second edition, Springer, New York, 2008, 249 pp. | MR | Zbl

[8] G. H. Hardy, J. E. Littlewood, “Some new properties of Fourier constants”, Math. Ann., 97:1 (1927), 159–209 | DOI | MR

[9] E. H. Moore, H. L. Smith, “A general theory of limits”, Amer. J. Math., 44:2 (1922), 102–121 | DOI | MR | Zbl

[10] E. Nursultanov, M. Ruzhansky, S. Tikhonov, “Nikolskii inequality and functional classes on compact Lie groups”, Funct. Anal. Appl., 49:3 (2015), 226–229 | DOI | MR | Zbl

[11] E. Nursultanov, M. Ruzhansky, S. Tikhonov, “Nikolskii inequality and Besov, Triebel–Lizorkin, Wiener and Beurling spaces on compact homogeneous manifolds”, Ann. Sc. Norm. Super. Pisa Cl. Sci., 16 (2016), 981–1017, arXiv: 1403.3430 [math.FA] | MR | Zbl

[12] E. Nursultanov, S. Tikhonov, “Net spaces and boundedness of integral operators”, J. Geom. Anal., 21:4 (2011), 950–981 | DOI | MR | Zbl

[13] E. Nursultanov, “Net spaces and inequalities of Hardy–Littlewood type”, Sb. Math., 189:3 (1998), 399–419 | DOI | MR | Zbl

[14] E. D. Nursultanov, “Net spaces and the Fourier transform”, Dokl. Akad. Nauk, 361:5 (1998), 597–599 | MR | Zbl

[15] M. Ruzhansky, V. Turunen, Pseudo-differential operators and symmetries. Background analysis and advanced topics, Pseudo-Differential Operators. Theory and Applications, 2, Birkhäuser Verlag, Basel, 2010 | MR | Zbl

[16] M. Ruzhansky, V. Turunen, “Global quantization of pseudo-differential operators on compact Lie groups, SU(2), 3-sphere, and homogeneous spaces”, Int. Math. Res. Not. IMRN, 2013, no. 11, 2439–2496 | DOI | MR | Zbl

[17] M. A. Shubin, Pseudodifferential operators and spectral theory, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1987 | DOI | MR | Zbl

[18] N. J. Vilenkin, Special functions and the theory of group representations, Translations of mathematical monographs, 22, American Mathematical Society, Providence, 1968 | MR | Zbl

[19] N. J. Vilenkin, A. U. Klimyk, Representation of Lie groups and special functions, v. 1, Mathematics and its Applications (Soviet Series), 72, 1991 | MR | Zbl