Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2017_8_3_a2, author = {R. Akylzhanov and M. Ruzhansky}, title = {Net spaces on lattices, {Hardy--Littlewood} type inequalities, and their converses}, journal = {Eurasian mathematical journal}, pages = {10--27}, publisher = {mathdoc}, volume = {8}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a2/} }
TY - JOUR AU - R. Akylzhanov AU - M. Ruzhansky TI - Net spaces on lattices, Hardy--Littlewood type inequalities, and their converses JO - Eurasian mathematical journal PY - 2017 SP - 10 EP - 27 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a2/ LA - en ID - EMJ_2017_8_3_a2 ER -
R. Akylzhanov; M. Ruzhansky. Net spaces on lattices, Hardy--Littlewood type inequalities, and their converses. Eurasian mathematical journal, Tome 8 (2017) no. 3, pp. 10-27. http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a2/
[1] R. Akylzhanov, E. Nursultanov, M. Ruzhansky, Hardy–Littlewood–Paley inequalities on compact homogeneous manifolds, 2015, arXiv: 1504.07043 | MR
[2] R. Akylzhanov, E. Nursultanov, M. Ruzhansky, “Hardy–Littlewood inequalities and Fourier multipliers on $SU(2)$”, Studia Math., 234 (2016), 1–29 | DOI | MR | Zbl
[3] R. Akylzhanov, E. Nursultanov, M. Ruzhansky, “Hardy–Littlewood–Paley type inequalities on compact Lie groups”, Math. Notes, 100 (2016), 287–290 | DOI | MR | Zbl
[4] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, 223, Springer-Verlag, Berlin–New York, 1976 | DOI | MR | Zbl
[5] C. Bennett, R. Sharpley, Interpolation of operators, Pure and Applied Mathematics, 129, Academic Press, Inc., Boston, MA, 1988 | MR | Zbl
[6] A. Dasgupta, M. Ruzhansky, “Gevrey functions and ultradistributions on compact Lie groups and homogeneous spaces”, Bull. Sci. Math., 138:6 (2014), 756–782 | DOI | MR | Zbl
[7] L. Grafakos, Classical Fourier analysis, Graduate Texts in Mathematics, second edition, Springer, New York, 2008, 249 pp. | MR | Zbl
[8] G. H. Hardy, J. E. Littlewood, “Some new properties of Fourier constants”, Math. Ann., 97:1 (1927), 159–209 | DOI | MR
[9] E. H. Moore, H. L. Smith, “A general theory of limits”, Amer. J. Math., 44:2 (1922), 102–121 | DOI | MR | Zbl
[10] E. Nursultanov, M. Ruzhansky, S. Tikhonov, “Nikolskii inequality and functional classes on compact Lie groups”, Funct. Anal. Appl., 49:3 (2015), 226–229 | DOI | MR | Zbl
[11] E. Nursultanov, M. Ruzhansky, S. Tikhonov, “Nikolskii inequality and Besov, Triebel–Lizorkin, Wiener and Beurling spaces on compact homogeneous manifolds”, Ann. Sc. Norm. Super. Pisa Cl. Sci., 16 (2016), 981–1017, arXiv: 1403.3430 [math.FA] | MR | Zbl
[12] E. Nursultanov, S. Tikhonov, “Net spaces and boundedness of integral operators”, J. Geom. Anal., 21:4 (2011), 950–981 | DOI | MR | Zbl
[13] E. Nursultanov, “Net spaces and inequalities of Hardy–Littlewood type”, Sb. Math., 189:3 (1998), 399–419 | DOI | MR | Zbl
[14] E. D. Nursultanov, “Net spaces and the Fourier transform”, Dokl. Akad. Nauk, 361:5 (1998), 597–599 | MR | Zbl
[15] M. Ruzhansky, V. Turunen, Pseudo-differential operators and symmetries. Background analysis and advanced topics, Pseudo-Differential Operators. Theory and Applications, 2, Birkhäuser Verlag, Basel, 2010 | MR | Zbl
[16] M. Ruzhansky, V. Turunen, “Global quantization of pseudo-differential operators on compact Lie groups, SU(2), 3-sphere, and homogeneous spaces”, Int. Math. Res. Not. IMRN, 2013, no. 11, 2439–2496 | DOI | MR | Zbl
[17] M. A. Shubin, Pseudodifferential operators and spectral theory, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1987 | DOI | MR | Zbl
[18] N. J. Vilenkin, Special functions and the theory of group representations, Translations of mathematical monographs, 22, American Mathematical Society, Providence, 1968 | MR | Zbl
[19] N. J. Vilenkin, A. U. Klimyk, Representation of Lie groups and special functions, v. 1, Mathematics and its Applications (Soviet Series), 72, 1991 | MR | Zbl