Unconditional bases of subspaces related to non-self-adjoint perturbations of self-adjoint operators
Eurasian mathematical journal, Tome 8 (2017) no. 1, pp. 119-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

Assume that $T$ is a self-adjoint operator on a Hilbert space $\mathcal{H}$ and that the spectrum of $T$ is contained in the union $\bigcup_{j\in J}\Delta_j$, $J\subseteq\mathbb{Z}$, of the segments $\Delta_j = [\alpha_j,\beta_j]\subset \mathbb{R}$ such that $\alpha_{j+1}>\beta_j$ and $$ \inf_j(\alpha_{j+1}-\beta_j)=d>0. $$ If $B$ is a bounded (in general non-self-adjoint) perturbation of $T$ with $||B||=:b$, then the spectrum of the perturbed operator $A=T+B$ lies in the union $\bigcup_{j\in J}U_b(\Delta_j)$ of the mutually disjoint closed $b$-neighborhoods $U_b(\Delta_j)$ of the segments $\Delta_j$ in $\mathbb{C}$. Let $Q_j$ be the Riesz projection onto the invariant subspace of $A$ corresponding to the part of the spectrum of $A$ lying in $U_b(\Delta_j)$, $j\in J$. Our main result is as follows: The subspaces $\mathcal{L}_j=Q_j(\mathcal{H})$, $j \in J$ form an unconditional basis in the whole space $\mathcal{H}$.
@article{EMJ_2017_8_1_a8,
     author = {A. K. Motovilov and A. A. Shkalikov},
     title = {Unconditional bases of subspaces related to non-self-adjoint perturbations of self-adjoint operators},
     journal = {Eurasian mathematical journal},
     pages = {119--127},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a8/}
}
TY  - JOUR
AU  - A. K. Motovilov
AU  - A. A. Shkalikov
TI  - Unconditional bases of subspaces related to non-self-adjoint perturbations of self-adjoint operators
JO  - Eurasian mathematical journal
PY  - 2017
SP  - 119
EP  - 127
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a8/
LA  - en
ID  - EMJ_2017_8_1_a8
ER  - 
%0 Journal Article
%A A. K. Motovilov
%A A. A. Shkalikov
%T Unconditional bases of subspaces related to non-self-adjoint perturbations of self-adjoint operators
%J Eurasian mathematical journal
%D 2017
%P 119-127
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a8/
%G en
%F EMJ_2017_8_1_a8
A. K. Motovilov; A. A. Shkalikov. Unconditional bases of subspaces related to non-self-adjoint perturbations of self-adjoint operators. Eurasian mathematical journal, Tome 8 (2017) no. 1, pp. 119-127. http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a8/

[1] S. Albeverio, A. K. Motovilov, A. A. Shkalikov, “Bounds on variation of spectral subspaces under $J$-selfadjoint perturbations”, Int. Equ. Oper. Theory, 64 (2009), 455–486 | DOI | MR | Zbl

[2] S. Albeverio, A. K. Motovilov, C. Tretter, “Bounds on the spectrum and reducing subspaces of a J-self-adjoint operator”, Indiana Univ. Math. J., 59 (2010), 1737–1776 | DOI | MR | Zbl

[3] I. C. Gohberg, M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, AMS, Providence, RI, 1969 | MR | Zbl

[4] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin–Heidelberg–New York, 1980 | MR | Zbl

[5] A. S. Markus, “Expansion in root vectors of a slightly disturbed self-adjoint operator”, Dokl. Acad. Nauk USSR, 142:3 (1962), 538–541 | MR | Zbl

[6] A. S. Markus, Introduction to the spectral theory of polynomial operator pencils, Amer. Math. Soc., Providence, RI, 1988 | MR | Zbl

[7] A. A. Shkalikov, “Perturbations of self-adjoint and normal operators with discrete spectrum”, Russian Math. Surveys, 71:5 (2016), 907–964 | DOI | DOI | MR | Zbl