Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2017_8_1_a8, author = {A. K. Motovilov and A. A. Shkalikov}, title = {Unconditional bases of subspaces related to non-self-adjoint perturbations of self-adjoint operators}, journal = {Eurasian mathematical journal}, pages = {119--127}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a8/} }
TY - JOUR AU - A. K. Motovilov AU - A. A. Shkalikov TI - Unconditional bases of subspaces related to non-self-adjoint perturbations of self-adjoint operators JO - Eurasian mathematical journal PY - 2017 SP - 119 EP - 127 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a8/ LA - en ID - EMJ_2017_8_1_a8 ER -
%0 Journal Article %A A. K. Motovilov %A A. A. Shkalikov %T Unconditional bases of subspaces related to non-self-adjoint perturbations of self-adjoint operators %J Eurasian mathematical journal %D 2017 %P 119-127 %V 8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a8/ %G en %F EMJ_2017_8_1_a8
A. K. Motovilov; A. A. Shkalikov. Unconditional bases of subspaces related to non-self-adjoint perturbations of self-adjoint operators. Eurasian mathematical journal, Tome 8 (2017) no. 1, pp. 119-127. http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a8/
[1] S. Albeverio, A. K. Motovilov, A. A. Shkalikov, “Bounds on variation of spectral subspaces under $J$-selfadjoint perturbations”, Int. Equ. Oper. Theory, 64 (2009), 455–486 | DOI | MR | Zbl
[2] S. Albeverio, A. K. Motovilov, C. Tretter, “Bounds on the spectrum and reducing subspaces of a J-self-adjoint operator”, Indiana Univ. Math. J., 59 (2010), 1737–1776 | DOI | MR | Zbl
[3] I. C. Gohberg, M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, AMS, Providence, RI, 1969 | MR | Zbl
[4] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin–Heidelberg–New York, 1980 | MR | Zbl
[5] A. S. Markus, “Expansion in root vectors of a slightly disturbed self-adjoint operator”, Dokl. Acad. Nauk USSR, 142:3 (1962), 538–541 | MR | Zbl
[6] A. S. Markus, Introduction to the spectral theory of polynomial operator pencils, Amer. Math. Soc., Providence, RI, 1988 | MR | Zbl
[7] A. A. Shkalikov, “Perturbations of self-adjoint and normal operators with discrete spectrum”, Russian Math. Surveys, 71:5 (2016), 907–964 | DOI | DOI | MR | Zbl