Unconditional bases of subspaces related to non-self-adjoint perturbations of self-adjoint operators
Eurasian mathematical journal, Tome 8 (2017) no. 1, pp. 119-127
Voir la notice de l'article provenant de la source Math-Net.Ru
Assume that $T$ is a self-adjoint operator on a Hilbert space $\mathcal{H}$ and that the spectrum of $T$ is contained in the union $\bigcup_{j\in J}\Delta_j$, $J\subseteq\mathbb{Z}$, of the segments $\Delta_j = [\alpha_j,\beta_j]\subset \mathbb{R}$ such that
$\alpha_{j+1}>\beta_j$ and
$$
\inf_j(\alpha_{j+1}-\beta_j)=d>0.
$$
If $B$ is a bounded (in general non-self-adjoint) perturbation of $T$ with $||B||=:b$, then the
spectrum of the perturbed operator $A=T+B$ lies in the union $\bigcup_{j\in J}U_b(\Delta_j)$ of the mutually
disjoint closed $b$-neighborhoods $U_b(\Delta_j)$ of the segments $\Delta_j$ in $\mathbb{C}$. Let $Q_j$ be the Riesz projection
onto the invariant subspace of $A$ corresponding to the part of the spectrum of $A$ lying in $U_b(\Delta_j)$, $j\in J$. Our main result is as follows: The subspaces $\mathcal{L}_j=Q_j(\mathcal{H})$, $j \in J$ form an unconditional
basis in the whole space $\mathcal{H}$.
@article{EMJ_2017_8_1_a8,
author = {A. K. Motovilov and A. A. Shkalikov},
title = {Unconditional bases of subspaces related to non-self-adjoint perturbations of self-adjoint operators},
journal = {Eurasian mathematical journal},
pages = {119--127},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a8/}
}
TY - JOUR AU - A. K. Motovilov AU - A. A. Shkalikov TI - Unconditional bases of subspaces related to non-self-adjoint perturbations of self-adjoint operators JO - Eurasian mathematical journal PY - 2017 SP - 119 EP - 127 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a8/ LA - en ID - EMJ_2017_8_1_a8 ER -
%0 Journal Article %A A. K. Motovilov %A A. A. Shkalikov %T Unconditional bases of subspaces related to non-self-adjoint perturbations of self-adjoint operators %J Eurasian mathematical journal %D 2017 %P 119-127 %V 8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a8/ %G en %F EMJ_2017_8_1_a8
A. K. Motovilov; A. A. Shkalikov. Unconditional bases of subspaces related to non-self-adjoint perturbations of self-adjoint operators. Eurasian mathematical journal, Tome 8 (2017) no. 1, pp. 119-127. http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a8/