Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2017_8_1_a7, author = {M. Lanza de Cristoforis and P. Luzzini}, title = {Time dependent boundary norms for kernels and regularizing properties of the double layer heat potential}, journal = {Eurasian mathematical journal}, pages = {76--118}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a7/} }
TY - JOUR AU - M. Lanza de Cristoforis AU - P. Luzzini TI - Time dependent boundary norms for kernels and regularizing properties of the double layer heat potential JO - Eurasian mathematical journal PY - 2017 SP - 76 EP - 118 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a7/ LA - en ID - EMJ_2017_8_1_a7 ER -
%0 Journal Article %A M. Lanza de Cristoforis %A P. Luzzini %T Time dependent boundary norms for kernels and regularizing properties of the double layer heat potential %J Eurasian mathematical journal %D 2017 %P 76-118 %V 8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a7/ %G en %F EMJ_2017_8_1_a7
M. Lanza de Cristoforis; P. Luzzini. Time dependent boundary norms for kernels and regularizing properties of the double layer heat potential. Eurasian mathematical journal, Tome 8 (2017) no. 1, pp. 76-118. http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a7/
[1] K. Deimling, Nonlinear functional analysis, Springer-Verlag, Berlin, etc., 1985 | MR | Zbl
[2] F. Dondi, M. Lanza de Cristoforis, “Tangential derivatives of the double layer potential of second order elliptic differential operators with constant coefficients”, Memoirs on Differential Equations and Mathematical Physics, 71 (2017) (to appear)
[3] M. Costabel, “Boundary integral operators for the heat equation”, Integral Equations Operator Theory, 13:4 (1990), 498–552 | DOI | MR | Zbl
[4] G. B. Folland, Real analysis. Modern techniques and their applications, Second edition, John Wiley Sons, Inc., New York, 1999 | MR
[5] M. Gevrey, “Sur les équations aux dérivées partielle du type parabolique”, Journal de mathématiques pures et appliquées, 9 (1913), 305–471
[6] M. Gevrey, “Sur les équations aux dérivées partielle du type parabolique (suite)”, Journal de mathématiques pures et appliquées, 10 (1914), 105–148 | Zbl
[7] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Second edition, Springer-Verlag, Berlin, 1983 | MR | Zbl
[8] S. Hofmann, J. L. Lewis, “$L^2$ solvability and representation by caloric layer potentials in time-varying domains”, Ann. of Math., 144:2 (1996), 349–420 | DOI | MR | Zbl
[9] L. I. Kamynin, “On the smoothness of thermal potentials”, Differencial'nye Uravnenija, 1 (1965), 799–839 (Russian) | MR | Zbl
[10] L. I. Kamynin, “On the smoothness of thermal potentials. II. Thermal potentials on the surface of type $L_{1,1,(1+\alpha)/2}^{1,\alpha,\alpha/2}$”, Differencial'nye Uravnenija, 2 (1966), 647–687 (in Russian) | MR | Zbl
[11] L. I. Kamynin, “On the smoothness of thermal potentials. V. Thermal potentials $U$, $V$ and $W$ on surfaces of type $\Pi^{m+1,\alpha,\alpha/2}_{2m+1,1,(1+\alpha)/2}$ and $\Pi^{m+1,1,(1+\alpha)/2}_{2m+3,1,\alpha,\alpha/2}$”, Differensial'nye Uravnenija, 4 (1968), 347–365 (in Russian) | MR | Zbl
[12] L. I. Kamynin, “On the smoothness of thermal potentials. V. Thermal potentials $U$, $V$ and $W$ on surfaces of type $L^{m+1,\alpha,\alpha/2}_{2m+1,1,(1+\alpha)/2}$ and $L^{m+1,1,(1+\alpha)/2}_{2m+3,\alpha,\alpha/2}$. II”, Differencial'nye Uravnenija, 4 (1968), 881–895 (in Russian) | MR
[13] R. Kress, Linear integral equations, Applied Mathematical Sciences, 82, Springer-Verlag, Berlin, 1989 | DOI | MR | Zbl
[14] N. V. Krylov, Lectures on elliptic and parabolic equations in Hölder spaces, Graduate Studies in Mathematics, 12, American Mathematical Society, Providence, RI, 1996 | DOI | MR | Zbl
[15] O. A. Ladyzenskaja, V. A. Solonnikov, N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Translated from the Russian by S. Smith, Translations of Mathematical Monographs, 23, American Mathematical Society, Providence, R.I., 1968 (in Russian) | MR
[16] J. L. Lewis, M. A. M. Murray, The method of layer potentials for the heat equation in time-varying domains, Mem. Amer. Math. Soc., 114, no. 545, 1995 | MR
[17] P. Luzzini, Derivate tangenziali del potenziale di doppio strato calorico, Tesi di laurea magistrale, relatore M. Lanza de Cristoforis, Università degli studi di Padova, 2015, 86 pp.
[18] J. Schauder, “Potentialtheoretische Untersuchungen”, Math. Z., 33:1 (1931), 602–640 | DOI | MR
[19] J. Schauder, “Bemerkung zu meiner Arbeit “Potentialtheoretische Untersuchungen I (Anhang)””, Math. Z., 35:1 (1933), 536–538 | DOI | MR
[20] Van Tun, “Theory of the heat potential. I. Level curves of heat potentials and the inverse problem in the theory of the heat potential”, Ž. Vyčisl. Mat. i Mat. Fiz., 4 (1964), 660–670 (in Russian) | MR
[21] Van Tun, “Theory of the heat potential. II. Smoothness of contour heat potentials”, Ž. Vyčisl. Mat. i Mat. Fiz., 5 (1965), 474–487 (in Russian) | MR
[22] Van Tun, “A theory of the thermal potential. III. Smoothness of a plane thermal potential”, Ž. Vyčisl. Mat. i Mat. Fiz., 5 (1965), 658–666 (in Russian) | MR