Some new inequalities for the Fourier transform for functions in generalized Lorentz spaces
Eurasian mathematical journal, Tome 8 (2017) no. 1, pp. 58-66

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical Hausdorff–Young and Hardy–Littlewood–Stein inequalities, relating functions on $\mathbb{R}$ and their Fourier transforms, are extended and complemented in various ways. In particular, a variant of the Hardy–Littlewood–Stein inequality covering the case $p\geqslant2$ is proved and two-sided estimates are derived.
@article{EMJ_2017_8_1_a5,
     author = {A. N. Kopezhanova},
     title = {Some new inequalities for the {Fourier} transform for functions in generalized {Lorentz} spaces},
     journal = {Eurasian mathematical journal},
     pages = {58--66},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a5/}
}
TY  - JOUR
AU  - A. N. Kopezhanova
TI  - Some new inequalities for the Fourier transform for functions in generalized Lorentz spaces
JO  - Eurasian mathematical journal
PY  - 2017
SP  - 58
EP  - 66
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a5/
LA  - en
ID  - EMJ_2017_8_1_a5
ER  - 
%0 Journal Article
%A A. N. Kopezhanova
%T Some new inequalities for the Fourier transform for functions in generalized Lorentz spaces
%J Eurasian mathematical journal
%D 2017
%P 58-66
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a5/
%G en
%F EMJ_2017_8_1_a5
A. N. Kopezhanova. Some new inequalities for the Fourier transform for functions in generalized Lorentz spaces. Eurasian mathematical journal, Tome 8 (2017) no. 1, pp. 58-66. http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a5/