Some new inequalities for the Fourier transform for functions in generalized Lorentz spaces
Eurasian mathematical journal, Tome 8 (2017) no. 1, pp. 58-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical Hausdorff–Young and Hardy–Littlewood–Stein inequalities, relating functions on $\mathbb{R}$ and their Fourier transforms, are extended and complemented in various ways. In particular, a variant of the Hardy–Littlewood–Stein inequality covering the case $p\geqslant2$ is proved and two-sided estimates are derived.
@article{EMJ_2017_8_1_a5,
     author = {A. N. Kopezhanova},
     title = {Some new inequalities for the {Fourier} transform for functions in generalized {Lorentz} spaces},
     journal = {Eurasian mathematical journal},
     pages = {58--66},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a5/}
}
TY  - JOUR
AU  - A. N. Kopezhanova
TI  - Some new inequalities for the Fourier transform for functions in generalized Lorentz spaces
JO  - Eurasian mathematical journal
PY  - 2017
SP  - 58
EP  - 66
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a5/
LA  - en
ID  - EMJ_2017_8_1_a5
ER  - 
%0 Journal Article
%A A. N. Kopezhanova
%T Some new inequalities for the Fourier transform for functions in generalized Lorentz spaces
%J Eurasian mathematical journal
%D 2017
%P 58-66
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a5/
%G en
%F EMJ_2017_8_1_a5
A. N. Kopezhanova. Some new inequalities for the Fourier transform for functions in generalized Lorentz spaces. Eurasian mathematical journal, Tome 8 (2017) no. 1, pp. 58-66. http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a5/

[1] L. S. Arendarenko, R. Oinarov, L.-E. Persson, “Some new Hardy-type integral inequalities on cones of monotone functions”, Advances in harmonic analysis and operator theory, Oper. Theory Adv. Appl., 229, Birkhäuser/Springer Basel AG, Basel, 2013, 77–89 | MR | Zbl

[2] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, 223, Springer-Verlag, Berlin–New York, 1976 | DOI | MR | Zbl

[3] Russian Math. Surveys, 68:4 (2013), 597–664 | DOI | DOI | MR | Zbl

[4] M. Dyachenko, S. Tikhonov, “General monotone sequences and convergence of trigonometric series”, Topics in Classical Analysis and Applications, in Honor of Daniel Waterman, World Scientific, 2008, 88–101 | MR | Zbl

[5] G. B. Folland, Fourier analysis and its applications, Brooks/Cole Publishing, 1992 | MR | Zbl

[6] A. Kopezhanova, L.-E. Persson, “On summability of the Fourier coefficients in bounded orthonormal systems for functions from some Lorentz type spaces”, Eurasian Math. J., 1:2 (2010), 76–85 | MR | Zbl

[7] A. Kufner, L. Maligranda, L.-E. Persson, The Hardy inequality. About its history and some related results, Vydavatelsky Servis, Plzen, 2007, 162 pp. | MR | Zbl

[8] A. Kufner, L.-E. Persson, Weighted inequalities of Hardy type, World Scientific, New Jersey–London–Singapore–Hong Kong, 2003 | MR | Zbl

[9] G. G. Lorentz, “Some new functional spaces”, Ann. Math., 51 (1950), 37–55 | DOI | MR | Zbl

[10] Izv. Math., 64:1 (2000), 93–120 | DOI | DOI | MR | Zbl

[11] Acad. Sci. Dokl. Math., 58:1 (1998), 105–107 | MR | Zbl

[12] E. D. Nursultanov, S. Tikhonov, “Net spaces and boundedness of integral operators”, J. Geom. Anal., 21:4 (2011), 950–981 | DOI | MR | Zbl

[13] E. M. Stein, “Interpolation of linear operators”, Trans. Amer. Math. Soc., 83 (1956), 482–492 | DOI | MR | Zbl

[14] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidian spaces, Princeton University Press, 1971 | MR

[15] A. Zygmund, Trigonometric series, 2nd ed., Cambridge University Press, 1959 | MR | Zbl