On an ill-posed problem for the Laplace operator with nonlocal boundary condition
Eurasian mathematical journal, Tome 8 (2017) no. 1, pp. 50-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a nonlocal problem for the Poisson equation in a rectangular is considered. It is shown that this problem is ill-posed as well as the Cauchy problem for the Laplace equation. The method of spectral expansion via eigenfunctions of the nonlocal problem for equations with deviating argument allows us to establish a criterion of the strong solvability of the considered nonlocal problem. It is shown that the ill-posedness of the nonlocal problem is equivalent to the existence of an isolated point of the continuous spectrum for a nonself-adjoint operator with the deviating argument.
@article{EMJ_2017_8_1_a4,
     author = {T. Sh. Kal'menov and B. T. Torebek},
     title = {On an ill-posed problem for the {Laplace} operator with nonlocal boundary condition},
     journal = {Eurasian mathematical journal},
     pages = {50--57},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a4/}
}
TY  - JOUR
AU  - T. Sh. Kal'menov
AU  - B. T. Torebek
TI  - On an ill-posed problem for the Laplace operator with nonlocal boundary condition
JO  - Eurasian mathematical journal
PY  - 2017
SP  - 50
EP  - 57
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a4/
LA  - en
ID  - EMJ_2017_8_1_a4
ER  - 
%0 Journal Article
%A T. Sh. Kal'menov
%A B. T. Torebek
%T On an ill-posed problem for the Laplace operator with nonlocal boundary condition
%J Eurasian mathematical journal
%D 2017
%P 50-57
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a4/
%G en
%F EMJ_2017_8_1_a4
T. Sh. Kal'menov; B. T. Torebek. On an ill-posed problem for the Laplace operator with nonlocal boundary condition. Eurasian mathematical journal, Tome 8 (2017) no. 1, pp. 50-57. http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a4/

[1] J. Hadamard, Lectures on the Cauchy problem in linear differential equations, Yale University Press, New Haven, CT, 1923 | MR

[2] M. M. Lavrent'ev, “On a Cauchy problem for the Poisson equation”, Izvestya Akad. Nauk USSR, Ser. Math., 20:6 (1955), 819–842 | MR

[3] A. N. Tikhonov, V. Ya. Arsenin, Methods for solving ill-posed problems, Nauka, M., 1979, 142 pp. | MR

[4] T. S. Kal'menov, U. A. Iskakova, “A criterion for the strong solvability of the mixed Cauchy problem for the Laplace equation”, Doklady Mathematics, 75:3 (2007), 370–373 | DOI | MR | Zbl

[5] T. S. Kal'menov, U. A. Iskakova, “Criterion for the strong solvability of the mixed Cauchy problem for the Laplace equation”, Differential Equations, 45:10 (2009), 1460–1466 | DOI | MR | Zbl

[6] B. T. Torebek, “A method for solving ill-posed Robin-Cauchy problems for second-order elliptic equations in multi-dimensional cylindrical domains”, Electronic Journal of Differential Equations, 2016:252 (2016), 1–9 | DOI | MR

[7] T. S. Kal'menov, M. A. Sadybekov, U. A. Iskakova, “On a criterion for the solvability of one ill-posed problem for the biharmonic equation”, J. Inverse Ill-Posed Probl., 2016 | DOI | MR

[8] M. A. Naimark, Linear differential operators, v. II, Ungar, New York, 1968 | MR | Zbl

[9] V. P. Mihailov, “On Riesz bases in $L_2(0, 1)$”, Dokl. Akad. Nauk USSR, 144 (1962), 981–984 | MR

[10] G. M. Kesel'man, “On the unconditional convergence of eigenfunction expansions of certain differential operators”, Izv. Vys. Uchebn. Zaved. Matematika, 39:2 (1964), 82–93 | MR | Zbl

[11] A. A. Shkalikov, “On the basis problem of the eigenfunctions of an ordinary differential operator”, Russian Mathematical Surveys, 34:5 (1979), 249–250 | DOI | MR | Zbl

[12] A. A. Shkalikov, “Perturbations of self-adjoint and normal operators with discrete spectrum”, Russian Mathematical Surveys, 71:5 (2016), 907–964 | DOI | MR | Zbl

[13] E. Titchmarsh, The theory of functions, Nauka, M., 1980 | MR | Zbl