Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2017_8_1_a4, author = {T. Sh. Kal'menov and B. T. Torebek}, title = {On an ill-posed problem for the {Laplace} operator with nonlocal boundary condition}, journal = {Eurasian mathematical journal}, pages = {50--57}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a4/} }
TY - JOUR AU - T. Sh. Kal'menov AU - B. T. Torebek TI - On an ill-posed problem for the Laplace operator with nonlocal boundary condition JO - Eurasian mathematical journal PY - 2017 SP - 50 EP - 57 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a4/ LA - en ID - EMJ_2017_8_1_a4 ER -
T. Sh. Kal'menov; B. T. Torebek. On an ill-posed problem for the Laplace operator with nonlocal boundary condition. Eurasian mathematical journal, Tome 8 (2017) no. 1, pp. 50-57. http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a4/
[1] J. Hadamard, Lectures on the Cauchy problem in linear differential equations, Yale University Press, New Haven, CT, 1923 | MR
[2] M. M. Lavrent'ev, “On a Cauchy problem for the Poisson equation”, Izvestya Akad. Nauk USSR, Ser. Math., 20:6 (1955), 819–842 | MR
[3] A. N. Tikhonov, V. Ya. Arsenin, Methods for solving ill-posed problems, Nauka, M., 1979, 142 pp. | MR
[4] T. S. Kal'menov, U. A. Iskakova, “A criterion for the strong solvability of the mixed Cauchy problem for the Laplace equation”, Doklady Mathematics, 75:3 (2007), 370–373 | DOI | MR | Zbl
[5] T. S. Kal'menov, U. A. Iskakova, “Criterion for the strong solvability of the mixed Cauchy problem for the Laplace equation”, Differential Equations, 45:10 (2009), 1460–1466 | DOI | MR | Zbl
[6] B. T. Torebek, “A method for solving ill-posed Robin-Cauchy problems for second-order elliptic equations in multi-dimensional cylindrical domains”, Electronic Journal of Differential Equations, 2016:252 (2016), 1–9 | DOI | MR
[7] T. S. Kal'menov, M. A. Sadybekov, U. A. Iskakova, “On a criterion for the solvability of one ill-posed problem for the biharmonic equation”, J. Inverse Ill-Posed Probl., 2016 | DOI | MR
[8] M. A. Naimark, Linear differential operators, v. II, Ungar, New York, 1968 | MR | Zbl
[9] V. P. Mihailov, “On Riesz bases in $L_2(0, 1)$”, Dokl. Akad. Nauk USSR, 144 (1962), 981–984 | MR
[10] G. M. Kesel'man, “On the unconditional convergence of eigenfunction expansions of certain differential operators”, Izv. Vys. Uchebn. Zaved. Matematika, 39:2 (1964), 82–93 | MR | Zbl
[11] A. A. Shkalikov, “On the basis problem of the eigenfunctions of an ordinary differential operator”, Russian Mathematical Surveys, 34:5 (1979), 249–250 | DOI | MR | Zbl
[12] A. A. Shkalikov, “Perturbations of self-adjoint and normal operators with discrete spectrum”, Russian Mathematical Surveys, 71:5 (2016), 907–964 | DOI | MR | Zbl
[13] E. Titchmarsh, The theory of functions, Nauka, M., 1980 | MR | Zbl