Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2017_8_1_a3, author = {A. Gogatishvili and R. Mustafayev and T. \"Unver}, title = {Embedding relations between weighted complementary local {Morrey-type} spaces and weighted local {Morrey-type} spaces}, journal = {Eurasian mathematical journal}, pages = {34--49}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a3/} }
TY - JOUR AU - A. Gogatishvili AU - R. Mustafayev AU - T. Ünver TI - Embedding relations between weighted complementary local Morrey-type spaces and weighted local Morrey-type spaces JO - Eurasian mathematical journal PY - 2017 SP - 34 EP - 49 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a3/ LA - en ID - EMJ_2017_8_1_a3 ER -
%0 Journal Article %A A. Gogatishvili %A R. Mustafayev %A T. Ünver %T Embedding relations between weighted complementary local Morrey-type spaces and weighted local Morrey-type spaces %J Eurasian mathematical journal %D 2017 %P 34-49 %V 8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a3/ %G en %F EMJ_2017_8_1_a3
A. Gogatishvili; R. Mustafayev; T. Ünver. Embedding relations between weighted complementary local Morrey-type spaces and weighted local Morrey-type spaces. Eurasian mathematical journal, Tome 8 (2017) no. 1, pp. 34-49. http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a3/
[1] Ts. Batbold, Y. Sawano, “Decompositions for local Morrey spaces”, Eurasian Math. J., 5:3 (2014), 9–45 | MR
[2] V.I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. I”, Eurasian Math. J., 3:3 (2012), 11–32 | MR | Zbl
[3] V.I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. II”, Eurasian Math. J., 4:1 (2013), 21–45 | MR | Zbl
[4] V.I. Burenkov, M.L. Goldman, “Necessary and sufficient conditions for the boundedness of the maximal operator from Lebesgue spaces to Morrey-type spaces”, Math. Inequal. Appl., 17:2 (2014), 401–418 | MR | Zbl
[5] V. I. Burenkov, H. V. Guliyev, “Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces”, Studia Math., 163:2 (2004), 157–176 | DOI | MR | Zbl
[6] V.I. Burenkov, H.V. Guliyev, V.S. Guliyev, “Necessary and sufficient conditions for the boundedness of fractional maximal operators in local Morrey-type spaces”, J. Comput. Appl. Math., 208:1 (2007), 280–301 | DOI | MR | Zbl
[7] V.I. Burenkov, H.V. Guliyev, V.S. Guliyev, “On boundedness of the fractional maximal operator from complementary Morrey-type spaces to Morrey-type spaces”, The interaction of analysis and geometry, Contemp. Math., 424, Amer. Math. Soc., Providence, RI, 2007, 17–32 | DOI | MR | Zbl
[8] V.I. Burenkov, V.S. Guliyev, A. Serbetci, T.V. Tararykova, “Necessary and sufficient conditions for the boundedness of genuine singular integral operators in local Morrey-type spaces”, Eurasian Math. J., 1:1 (2010), 32–53 | MR | Zbl
[9] V. I. Burenkov, A. Gogatishvili, V. S. Guliyev, R. Ch. Mustafayev, “Boundedness of the fractional maximal operator in local Morrey-type spaces”, Complex Var. Elliptic Equ., 55:8–10 (2010), 739–758 | DOI | MR | Zbl
[10] V. I. Burenkov, A. Gogatishvili, V. S. Guliyev, R. Ch. Mustafayev, “Boundedness of the Riesz potential in local Morrey-type spaces”, Potential Anal., 35:1 (2011), 67–87 | DOI | MR | Zbl
[11] V.I. Burenkov, P. Jain, T.V. Tararykova, “On boundedness of the Hardy operator”, Eurasian Math. J., 2:1 (2011), 52–80 | MR | Zbl
[12] Proc. Steklov Inst. Math., 269:1 (2010), 46–56 | DOI | MR | Zbl
[13] Proc. Steklov Inst. Math., 284 (2014), 97–128 | DOI | MR | Zbl
[14] V.I. Burenkov, R. Oinarov, “Necessary and sufficient conditions for boundedness of the Hardy operator from a weghted Lebesque space to a Morrey-type space”, Math. Inequal. Appl., 16:1 (2013), 1–19 | MR | Zbl
[15] G. B. Folland, Real analysis: Modern techniques and their applications, Pure and Applied Mathematics, 2nd ed., A Wiley-Interscience Publication, John Wiley Sons, Inc., New York, 1999 | MR | Zbl
[16] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Springer-Verlag, Berlin, 1983 | MR | Zbl
[17] A. Gogatishvili, R. Ch. Mustafayev, “Dual spaces of local Morrey-type spaces”, Czechoslovak Math. J., 61(136):3 (2011), 609–622 | DOI | MR | Zbl
[18] A. Gogatishvili, R. Ch. Mustafayev, “New pre-dual space of Morrey space”, J. Math. Anal. Appl., 397:2 (2013), 678–692 | DOI | MR | Zbl
[19] A. Gogatishvili, R. Ch. Mustafayev, “Weighted iterated Hardy-type inequalities”, Math. Inequal. Appl., 2016 (to appear) | MR
[20] A. Gogatishvili, R. Ch. Mustafayev, “Iterated Hardy-type inequalities involving suprema”, Math. Inequal. Appl., 2016 (to appear) | MR
[21] A. Gogatishvili, R. Ch. Mustafayev, L.-E. Persson, “Some new iterated Hardy-type inequalities”, J. Funct. Spaces Appl., 2012, 734194, 30 pp. | MR | Zbl
[22] A. Gogatishvili, B. Opic, L. Pick, “Weighted inequalities for Hardy-type operators involving suprema”, Collect. Math., 57:3 (2006), 227–255 | MR | Zbl
[23] V. S. Guliyev, Integral operators on function spaces on the homogeneous groups and on domains in $\mathbb{R}^n$, Doctor's degree dissertation, Mat. Inst. Steklov, M., 1994 (in Russian)
[24] V. S. Guliev, R. Ch. Mustafaev, “Fractional integrals in spaces of functions defined on spaces of homogeneous type”, Anal. Math., 24:3 (1998), 181–200 (Russian, with English and Russian summaries) | DOI | MR | Zbl
[25] A. Kufner, L.-E. Persson, Weighted inequalities of Hardy type, World Scientific Publishing Co. Inc., River Edge, NJ, 2003 | MR | Zbl
[26] C. B. Morrey, “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43:1 (1938), 126–166 | DOI | MR
[27] R. Ch. Mustafayev, T. Ünver, “Embeddings between weighted local Morrey-type spaces and weighted Lebesgue spaces”, J. Math. Inequal., 9:1 (2015), 277–296 | DOI | MR | Zbl
[28] B. Opic, A. Kufner, Hardy-type inequalities, Pitman Research Notes in Mathematics Series, 219, Longman Scientific Technical, Harlow, 1990 | MR | Zbl