Embedding relations between weighted complementary local Morrey-type spaces and weighted local Morrey-type spaces
Eurasian mathematical journal, Tome 8 (2017) no. 1, pp. 34-49

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper embedding relations between weighted complementary local Morrey-type spaces $^cLM_{p\theta,\omega}(\mathbb{R}^n,v)$ and weighted local Morrey-type spaces $LM_{p\theta,\omega}(\mathbb{R}^n,v)$ are characterized. In particular, two-sided estimates of the optimal constant $c$ in the inequality $$ \left( \int_0^\infty\left( \int_{B(0,t)} f(x)^{p_2}v_2(x)\,dx \right)^{\frac{q_2}{p_2}}u_2(t)\,dt \right)^{\frac1{q_2}} \leqslant c \left(\int_0^\infty\left(\int_{^cB(0,t)}f(x)^{p_1}v_1(x)\,dx\right)^{\frac{q_1}{p_1}}u_1(t)\,dt\right)^{\frac1{q_1}},\quad f\geqslant0 $$ are obtained, where $p_1$, $p_2$, $q_1$, $q_2\in(0,\infty)$, $p_2\leqslant q_2$ and $u_1$, $u_2$ and $v_1$, $v_2$ are weights on $(0,\infty)$ and $\mathbb{R}^n$, respectively. The proof is based on the combination of the duality techniques with estimates of optimal constants of the embedding relations between weighted local Morrey-type and complementary local Morrey-type spaces and weighted Lebesgue spaces, which allows to reduce the problem to using of the known Hardy-type inequalities.
@article{EMJ_2017_8_1_a3,
     author = {A. Gogatishvili and R. Mustafayev and T. \"Unver},
     title = {Embedding relations between weighted complementary local {Morrey-type} spaces and weighted local {Morrey-type} spaces},
     journal = {Eurasian mathematical journal},
     pages = {34--49},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a3/}
}
TY  - JOUR
AU  - A. Gogatishvili
AU  - R. Mustafayev
AU  - T. Ünver
TI  - Embedding relations between weighted complementary local Morrey-type spaces and weighted local Morrey-type spaces
JO  - Eurasian mathematical journal
PY  - 2017
SP  - 34
EP  - 49
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a3/
LA  - en
ID  - EMJ_2017_8_1_a3
ER  - 
%0 Journal Article
%A A. Gogatishvili
%A R. Mustafayev
%A T. Ünver
%T Embedding relations between weighted complementary local Morrey-type spaces and weighted local Morrey-type spaces
%J Eurasian mathematical journal
%D 2017
%P 34-49
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a3/
%G en
%F EMJ_2017_8_1_a3
A. Gogatishvili; R. Mustafayev; T. Ünver. Embedding relations between weighted complementary local Morrey-type spaces and weighted local Morrey-type spaces. Eurasian mathematical journal, Tome 8 (2017) no. 1, pp. 34-49. http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a3/