Embedding relations between weighted complementary local Morrey-type spaces and weighted local Morrey-type spaces
Eurasian mathematical journal, Tome 8 (2017) no. 1, pp. 34-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper embedding relations between weighted complementary local Morrey-type spaces $^cLM_{p\theta,\omega}(\mathbb{R}^n,v)$ and weighted local Morrey-type spaces $LM_{p\theta,\omega}(\mathbb{R}^n,v)$ are characterized. In particular, two-sided estimates of the optimal constant $c$ in the inequality $$ \left( \int_0^\infty\left( \int_{B(0,t)} f(x)^{p_2}v_2(x)\,dx \right)^{\frac{q_2}{p_2}}u_2(t)\,dt \right)^{\frac1{q_2}} \leqslant c \left(\int_0^\infty\left(\int_{^cB(0,t)}f(x)^{p_1}v_1(x)\,dx\right)^{\frac{q_1}{p_1}}u_1(t)\,dt\right)^{\frac1{q_1}},\quad f\geqslant0 $$ are obtained, where $p_1$, $p_2$, $q_1$, $q_2\in(0,\infty)$, $p_2\leqslant q_2$ and $u_1$, $u_2$ and $v_1$, $v_2$ are weights on $(0,\infty)$ and $\mathbb{R}^n$, respectively. The proof is based on the combination of the duality techniques with estimates of optimal constants of the embedding relations between weighted local Morrey-type and complementary local Morrey-type spaces and weighted Lebesgue spaces, which allows to reduce the problem to using of the known Hardy-type inequalities.
@article{EMJ_2017_8_1_a3,
     author = {A. Gogatishvili and R. Mustafayev and T. \"Unver},
     title = {Embedding relations between weighted complementary local {Morrey-type} spaces and weighted local {Morrey-type} spaces},
     journal = {Eurasian mathematical journal},
     pages = {34--49},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a3/}
}
TY  - JOUR
AU  - A. Gogatishvili
AU  - R. Mustafayev
AU  - T. Ünver
TI  - Embedding relations between weighted complementary local Morrey-type spaces and weighted local Morrey-type spaces
JO  - Eurasian mathematical journal
PY  - 2017
SP  - 34
EP  - 49
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a3/
LA  - en
ID  - EMJ_2017_8_1_a3
ER  - 
%0 Journal Article
%A A. Gogatishvili
%A R. Mustafayev
%A T. Ünver
%T Embedding relations between weighted complementary local Morrey-type spaces and weighted local Morrey-type spaces
%J Eurasian mathematical journal
%D 2017
%P 34-49
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a3/
%G en
%F EMJ_2017_8_1_a3
A. Gogatishvili; R. Mustafayev; T. Ünver. Embedding relations between weighted complementary local Morrey-type spaces and weighted local Morrey-type spaces. Eurasian mathematical journal, Tome 8 (2017) no. 1, pp. 34-49. http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a3/

[1] Ts. Batbold, Y. Sawano, “Decompositions for local Morrey spaces”, Eurasian Math. J., 5:3 (2014), 9–45 | MR

[2] V.I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. I”, Eurasian Math. J., 3:3 (2012), 11–32 | MR | Zbl

[3] V.I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. II”, Eurasian Math. J., 4:1 (2013), 21–45 | MR | Zbl

[4] V.I. Burenkov, M.L. Goldman, “Necessary and sufficient conditions for the boundedness of the maximal operator from Lebesgue spaces to Morrey-type spaces”, Math. Inequal. Appl., 17:2 (2014), 401–418 | MR | Zbl

[5] V. I. Burenkov, H. V. Guliyev, “Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces”, Studia Math., 163:2 (2004), 157–176 | DOI | MR | Zbl

[6] V.I. Burenkov, H.V. Guliyev, V.S. Guliyev, “Necessary and sufficient conditions for the boundedness of fractional maximal operators in local Morrey-type spaces”, J. Comput. Appl. Math., 208:1 (2007), 280–301 | DOI | MR | Zbl

[7] V.I. Burenkov, H.V. Guliyev, V.S. Guliyev, “On boundedness of the fractional maximal operator from complementary Morrey-type spaces to Morrey-type spaces”, The interaction of analysis and geometry, Contemp. Math., 424, Amer. Math. Soc., Providence, RI, 2007, 17–32 | DOI | MR | Zbl

[8] V.I. Burenkov, V.S. Guliyev, A. Serbetci, T.V. Tararykova, “Necessary and sufficient conditions for the boundedness of genuine singular integral operators in local Morrey-type spaces”, Eurasian Math. J., 1:1 (2010), 32–53 | MR | Zbl

[9] V. I. Burenkov, A. Gogatishvili, V. S. Guliyev, R. Ch. Mustafayev, “Boundedness of the fractional maximal operator in local Morrey-type spaces”, Complex Var. Elliptic Equ., 55:8–10 (2010), 739–758 | DOI | MR | Zbl

[10] V. I. Burenkov, A. Gogatishvili, V. S. Guliyev, R. Ch. Mustafayev, “Boundedness of the Riesz potential in local Morrey-type spaces”, Potential Anal., 35:1 (2011), 67–87 | DOI | MR | Zbl

[11] V.I. Burenkov, P. Jain, T.V. Tararykova, “On boundedness of the Hardy operator”, Eurasian Math. J., 2:1 (2011), 52–80 | MR | Zbl

[12] Proc. Steklov Inst. Math., 269:1 (2010), 46–56 | DOI | MR | Zbl

[13] Proc. Steklov Inst. Math., 284 (2014), 97–128 | DOI | MR | Zbl

[14] V.I. Burenkov, R. Oinarov, “Necessary and sufficient conditions for boundedness of the Hardy operator from a weghted Lebesque space to a Morrey-type space”, Math. Inequal. Appl., 16:1 (2013), 1–19 | MR | Zbl

[15] G. B. Folland, Real analysis: Modern techniques and their applications, Pure and Applied Mathematics, 2nd ed., A Wiley-Interscience Publication, John Wiley Sons, Inc., New York, 1999 | MR | Zbl

[16] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Springer-Verlag, Berlin, 1983 | MR | Zbl

[17] A. Gogatishvili, R. Ch. Mustafayev, “Dual spaces of local Morrey-type spaces”, Czechoslovak Math. J., 61(136):3 (2011), 609–622 | DOI | MR | Zbl

[18] A. Gogatishvili, R. Ch. Mustafayev, “New pre-dual space of Morrey space”, J. Math. Anal. Appl., 397:2 (2013), 678–692 | DOI | MR | Zbl

[19] A. Gogatishvili, R. Ch. Mustafayev, “Weighted iterated Hardy-type inequalities”, Math. Inequal. Appl., 2016 (to appear) | MR

[20] A. Gogatishvili, R. Ch. Mustafayev, “Iterated Hardy-type inequalities involving suprema”, Math. Inequal. Appl., 2016 (to appear) | MR

[21] A. Gogatishvili, R. Ch. Mustafayev, L.-E. Persson, “Some new iterated Hardy-type inequalities”, J. Funct. Spaces Appl., 2012, 734194, 30 pp. | MR | Zbl

[22] A. Gogatishvili, B. Opic, L. Pick, “Weighted inequalities for Hardy-type operators involving suprema”, Collect. Math., 57:3 (2006), 227–255 | MR | Zbl

[23] V. S. Guliyev, Integral operators on function spaces on the homogeneous groups and on domains in $\mathbb{R}^n$, Doctor's degree dissertation, Mat. Inst. Steklov, M., 1994 (in Russian)

[24] V. S. Guliev, R. Ch. Mustafaev, “Fractional integrals in spaces of functions defined on spaces of homogeneous type”, Anal. Math., 24:3 (1998), 181–200 (Russian, with English and Russian summaries) | DOI | MR | Zbl

[25] A. Kufner, L.-E. Persson, Weighted inequalities of Hardy type, World Scientific Publishing Co. Inc., River Edge, NJ, 2003 | MR | Zbl

[26] C. B. Morrey, “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43:1 (1938), 126–166 | DOI | MR

[27] R. Ch. Mustafayev, T. Ünver, “Embeddings between weighted local Morrey-type spaces and weighted Lebesgue spaces”, J. Math. Inequal., 9:1 (2015), 277–296 | DOI | MR | Zbl

[28] B. Opic, A. Kufner, Hardy-type inequalities, Pitman Research Notes in Mathematics Series, 219, Longman Scientific Technical, Harlow, 1990 | MR | Zbl