Embedding relations between weighted complementary local Morrey-type spaces and weighted local Morrey-type spaces
Eurasian mathematical journal, Tome 8 (2017) no. 1, pp. 34-49
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper embedding relations between weighted complementary local Morrey-type spaces $^cLM_{p\theta,\omega}(\mathbb{R}^n,v)$ and weighted local Morrey-type spaces $LM_{p\theta,\omega}(\mathbb{R}^n,v)$ are characterized. In particular, two-sided estimates of the optimal constant $c$ in the inequality
$$
\left(
\int_0^\infty\left(
\int_{B(0,t)} f(x)^{p_2}v_2(x)\,dx
\right)^{\frac{q_2}{p_2}}u_2(t)\,dt
\right)^{\frac1{q_2}}
\leqslant c \left(\int_0^\infty\left(\int_{^cB(0,t)}f(x)^{p_1}v_1(x)\,dx\right)^{\frac{q_1}{p_1}}u_1(t)\,dt\right)^{\frac1{q_1}},\quad f\geqslant0
$$
are obtained, where $p_1$, $p_2$, $q_1$, $q_2\in(0,\infty)$, $p_2\leqslant q_2$ and $u_1$, $u_2$ and $v_1$, $v_2$ are weights on $(0,\infty)$ and $\mathbb{R}^n$, respectively. The proof is based on the combination of the duality techniques with
estimates of optimal constants of the embedding relations between weighted local Morrey-type
and complementary local Morrey-type spaces and weighted Lebesgue spaces, which allows to
reduce the problem to using of the known Hardy-type inequalities.
@article{EMJ_2017_8_1_a3,
author = {A. Gogatishvili and R. Mustafayev and T. \"Unver},
title = {Embedding relations between weighted complementary local {Morrey-type} spaces and weighted local {Morrey-type} spaces},
journal = {Eurasian mathematical journal},
pages = {34--49},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a3/}
}
TY - JOUR AU - A. Gogatishvili AU - R. Mustafayev AU - T. Ünver TI - Embedding relations between weighted complementary local Morrey-type spaces and weighted local Morrey-type spaces JO - Eurasian mathematical journal PY - 2017 SP - 34 EP - 49 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a3/ LA - en ID - EMJ_2017_8_1_a3 ER -
%0 Journal Article %A A. Gogatishvili %A R. Mustafayev %A T. Ünver %T Embedding relations between weighted complementary local Morrey-type spaces and weighted local Morrey-type spaces %J Eurasian mathematical journal %D 2017 %P 34-49 %V 8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a3/ %G en %F EMJ_2017_8_1_a3
A. Gogatishvili; R. Mustafayev; T. Ünver. Embedding relations between weighted complementary local Morrey-type spaces and weighted local Morrey-type spaces. Eurasian mathematical journal, Tome 8 (2017) no. 1, pp. 34-49. http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a3/