Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2016_7_4_a5, author = {A. M. Selitskii}, title = {On the solvability of parabolic functional differential equations {in~Banach} spaces}, journal = {Eurasian mathematical journal}, pages = {85--91}, publisher = {mathdoc}, volume = {7}, number = {4}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2016_7_4_a5/} }
A. M. Selitskii. On the solvability of parabolic functional differential equations in~Banach spaces. Eurasian mathematical journal, Tome 7 (2016) no. 4, pp. 85-91. http://geodesic.mathdoc.fr/item/EMJ_2016_7_4_a5/
[1] M. S. Agranovich, Sobolev spaces, their generalizations, and elliptic problems in smooth and Lipschitz domains, Springer, Heidelberg–New York, 2015 | MR | Zbl
[2] M. S. Agranovich, “Spectral problems in Sobolev-type spaces for strongly elliptic systems in Lipschitz domains”, Math. Nachr., 289:16 (2016), 1968–1988 | DOI | MR
[3] A. Ashyralyev, P. E. Sobolevskii, Well-posedness of parabolic difference equations, Birkhauser, Basel, 1994 | MR
[4] R. Dautray, J.-L. Lions, Analyse mathématique et calcul numérique, v. 3, Masson, Paris, 1985
[5] E. M. Ouhabaz, Analysis of heat equations on domains, Princeton Univ. Press, Princeton–Oxford, 2005 | MR | Zbl
[6] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer, Berlin–Heidelberg, 1983 | MR | Zbl
[7] V. S. Rychkov, “On restrictions and extensions of the Besov and Tribel-Lizorkin spaces with respect to Lipschitz domains”, J. London Math. Soc., 60:2 (1997), 237–257 | MR
[8] A. M. Selitskii, “Space of initial data for the second boundary-value problem for a parabolic differential-difference equation in Lipschitz domains”, Math. Notes, 94:3 (2013), 135–138 | MR
[9] A. M. Selitskii, “The space of initial data of the Robin boundary-value problem for parabolic differential-difference equations”, Contemporary Analysis and Applied Mathematics, 1:2 (2013), 91–97 | MR | Zbl
[10] A. M. Selitskii, A. L. Skubachevskii, “The second boundary-value problem for parabolic differential-difference equations”, J. Math. Sci., 143:4 (2007), 3386–3400 | DOI | MR
[11] A. L. Skubachevskii, “Bifurcation of periodic solutions for nonlinear parabolic functional differential equations arising in optoelectronics”, Nonlinear Anal., 32:2 (1998), 261–278 | DOI | MR | Zbl
[12] H. Triebel, Interpolation theory, function spaces, differential operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978 | MR