Harmonic analysis of functions periodic at infinity
Eurasian mathematical journal, Tome 7 (2016) no. 4, pp. 9-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we introduce the notion of vector-valued functions periodic at infinity. We characterize the sums of the usual periodic functions and functions vanishing at infinity as a subclass of these functions. Our main focus is the development of the basic harmonic analysis for functions periodic at infinity and an analogue of the celebrated Wiener’s Lemma that deals with absolutely convergent Fourier series. We also derive criteria of periodicity at infinity for solutions of difference and differential equations. Some of the results are derived by means of the spectral theory of isometric group representations.
@article{EMJ_2016_7_4_a1,
     author = {A. Baskakov and I. Strukova},
     title = {Harmonic analysis of functions periodic at infinity},
     journal = {Eurasian mathematical journal},
     pages = {9--29},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2016_7_4_a1/}
}
TY  - JOUR
AU  - A. Baskakov
AU  - I. Strukova
TI  - Harmonic analysis of functions periodic at infinity
JO  - Eurasian mathematical journal
PY  - 2016
SP  - 9
EP  - 29
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2016_7_4_a1/
LA  - en
ID  - EMJ_2016_7_4_a1
ER  - 
%0 Journal Article
%A A. Baskakov
%A I. Strukova
%T Harmonic analysis of functions periodic at infinity
%J Eurasian mathematical journal
%D 2016
%P 9-29
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2016_7_4_a1/
%G en
%F EMJ_2016_7_4_a1
A. Baskakov; I. Strukova. Harmonic analysis of functions periodic at infinity. Eurasian mathematical journal, Tome 7 (2016) no. 4, pp. 9-29. http://geodesic.mathdoc.fr/item/EMJ_2016_7_4_a1/

[1] A. Aldroubi, A. G. Baskakov, I. A. Krishtal, “Slanted matrices, Banach frames, and sampling”, J. Funct. Anal., 255 (2008), 1667–1691 | DOI | MR | Zbl

[2] R. Balan, I. A. Krishtal, “An almost periodic noncommutative Wiener's lemma”, J. Math. Anal. Appl., 370 (2010), 339–349 ; 301 | DOI | MR | Zbl

[3] Math. Notes, 24:1–2 (1978), 606–612 ; 1164 | DOI | MR

[4] Siberian Math. J., 20:5 (1979), 665–672 | DOI | MR | Zbl

[5] J. Funct. Anal., 14:3 (1980), 215–217 | DOI | MR

[6] Math. of the USSR-Sbornik, 52:1 (1985), 63–90 | DOI | MR | Zbl | Zbl

[7] Soviet Math. (Izvestiya VUZ. Matematika), 32:11 (1988), 1–14 | MR | Zbl

[8] Funct. Anal. Appl., 24:3 (1990), 222–224 | DOI | MR | Zbl

[9] Math. Notes, 52:2 (1992), 764–771 | DOI | MR | Zbl

[10] Siberian Math. J., 38:1 (1997), 10–22 | DOI | MR | Zbl

[11] Izv. Math., 61:6 (1997), 1113–1135 | DOI | DOI | MR | Zbl

[12] J. Math. Sci. (N.Y.), 137:4 (2006), 4885–5036 | DOI | MR | Zbl

[13] Russian Math. Surveys, 68:1 (2013), 69–116 | DOI | DOI | MR | Zbl

[14] Izv. Math., 69:3 (2005), 439–486 | DOI | DOI | MR | Zbl

[15] E. A. Bredihina, “On a theorem of S. N. Bernšteĭn on the best approximation of continuous function by entire functions”, Izv. Vuzov Ser. Mat., 1961, no. 6, 3–7 | MR

[16] P. L. Butzer, H. Berens, Semi-groups of operators and approximation, Die Grundlehren der mathematischen Wissenschaften, 145, Springer-Verlag New York Inc., New York, 1967 | MR | Zbl

[17] C. Chicone, Y. Latushkin, Evolution semigroups in dynamical systems and differential equations, Mathematical Surveys and Monographs, 70, American Mathematical Society, Providence, RI, 1999 | DOI | MR | Zbl

[18] Yu. L. Daletsky, M. G. Krein, Stability of solutions of differential equations in Banach space, Nonlinear Analysis and Its Applications, Nauka, M., 1970 (in Russian)

[19] K. de Leeuw, “Fourier series of operators and an extension of the F. and M. Riesz theorem”, Bull. Amer. Math. Soc., 79 (1973), 342–344 | DOI | MR | Zbl

[20] K.-J. Engel, R. Nagel, A short course on operator semigroups, Universitext, Springer, New York, 2006 | MR | Zbl

[21] K. Gröchenig, A. Klotz, “Noncommutative approximation: inverse-closed subalgebras and off-diagonal decay of matrices”, Constr. Approx., 32 (2010), 429–466 | DOI | MR | Zbl

[22] E. Hewitt, K. A. Ross, Abstract harmonic analysis, v. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 115, second ed., Springer-Verlag, Berlin, 1979 | MR | Zbl

[23] E. Hille, R. S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, 31, rev. ed., American Mathematical Society, R.I., 1957 | MR

[24] D. Jackson, Über die Genauigkeit der Annäherung stetiger Funktionen durch ganze rationale Funktionen gegebenen Grades und trigonometrische Summen gegebener Ordnung, Preisschrift und Dissertation, Universitat Gottingen, 1911

[25] S. Jaffard, “Propriétés des matrices “bien localisées” près de leur diagonale et quelques applications”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7 (1990), 461–476 | DOI | MR | Zbl

[26] J. Karamata, “Sur un mode de croissance régulière. Théorèmes fondamentaux”, Bulletin S. M. F., 61 (1933), 55–62 | MR

[27] N. P. Kuptsov, “Direct and inverse theorems of approximation theory and semigroups of operators”, Uspehi Mat. Nauk, 23:4 (1968), 117–178 (in Russian) | MR

[28] N. Wiener, “Tauberian theorems”, Ann. of Math. (2), 33 (1932), 1–100 | DOI | MR

[29] A. Zygmund, Trigonometric series, v. 1, Cambridge University Press, 1959 | Zbl