Harmonic analysis of functions periodic at infinity
Eurasian mathematical journal, Tome 7 (2016) no. 4, pp. 9-29

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we introduce the notion of vector-valued functions periodic at infinity. We characterize the sums of the usual periodic functions and functions vanishing at infinity as a subclass of these functions. Our main focus is the development of the basic harmonic analysis for functions periodic at infinity and an analogue of the celebrated Wiener’s Lemma that deals with absolutely convergent Fourier series. We also derive criteria of periodicity at infinity for solutions of difference and differential equations. Some of the results are derived by means of the spectral theory of isometric group representations.
@article{EMJ_2016_7_4_a1,
     author = {A. Baskakov and I. Strukova},
     title = {Harmonic analysis of functions periodic at infinity},
     journal = {Eurasian mathematical journal},
     pages = {9--29},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2016_7_4_a1/}
}
TY  - JOUR
AU  - A. Baskakov
AU  - I. Strukova
TI  - Harmonic analysis of functions periodic at infinity
JO  - Eurasian mathematical journal
PY  - 2016
SP  - 9
EP  - 29
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2016_7_4_a1/
LA  - en
ID  - EMJ_2016_7_4_a1
ER  - 
%0 Journal Article
%A A. Baskakov
%A I. Strukova
%T Harmonic analysis of functions periodic at infinity
%J Eurasian mathematical journal
%D 2016
%P 9-29
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2016_7_4_a1/
%G en
%F EMJ_2016_7_4_a1
A. Baskakov; I. Strukova. Harmonic analysis of functions periodic at infinity. Eurasian mathematical journal, Tome 7 (2016) no. 4, pp. 9-29. http://geodesic.mathdoc.fr/item/EMJ_2016_7_4_a1/