An analogue of the Hahn--Banach theorem for functionals on abstract convex cones
Eurasian mathematical journal, Tome 7 (2016) no. 3, pp. 89-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove an analogue of the Hahn–Banach theorem on the extension of a linear functional with a convex estimate for each abstract convex cone with the cancellation law. Also we consider the special class of the so-called strict convex normed cones $(SCNC)$. For such structures we obtain an appropriate analogue of the Hahn–Banach separation theorem. On the base of this result we prove that each $(SCNC)$ is sublinearly, injectively and isometrically embedded in some Banach space.
@article{EMJ_2016_7_3_a7,
     author = {F. S. Stonyakin},
     title = {An analogue of the {Hahn--Banach} theorem for functionals on abstract convex cones},
     journal = {Eurasian mathematical journal},
     pages = {89--99},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2016_7_3_a7/}
}
TY  - JOUR
AU  - F. S. Stonyakin
TI  - An analogue of the Hahn--Banach theorem for functionals on abstract convex cones
JO  - Eurasian mathematical journal
PY  - 2016
SP  - 89
EP  - 99
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2016_7_3_a7/
LA  - en
ID  - EMJ_2016_7_3_a7
ER  - 
%0 Journal Article
%A F. S. Stonyakin
%T An analogue of the Hahn--Banach theorem for functionals on abstract convex cones
%J Eurasian mathematical journal
%D 2016
%P 89-99
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2016_7_3_a7/
%G en
%F EMJ_2016_7_3_a7
F. S. Stonyakin. An analogue of the Hahn--Banach theorem for functionals on abstract convex cones. Eurasian mathematical journal, Tome 7 (2016) no. 3, pp. 89-99. http://geodesic.mathdoc.fr/item/EMJ_2016_7_3_a7/

[1] E. G. Bakhtigareeva, M. L. Goldman, “Associate norms and optimal embeddings for a class of two-weighted integral quasi-norms”, Fund. Appl. Math., 19:5 (2014), 3–33 (in Russian) | MR

[2] E. G. Bakhtigareeva, “Optimal Banach function space for a given cone of decreasing functions in a weighted $L_p$-space”, Eurasian Math. J., 6:1 (2015), 6–25 | MR

[3] M. L. Goldman, P. P. Zapreiko, “Optimal Banach function spaces generalized with the cone of nonnegative increasing functions”, Trans. Inst. Math. Nat. Akad. Sci. Belarus, 22:1 (2014), 24–34 (in Russian)

[4] K. Keimel, “Topological Cones: Functional Analysis in a $T_0$-Setting”, Semigroup Forum, 77 (2008), 109–142 | DOI | MR | Zbl

[5] I. V. Orlov, “Inverse and implicat function theorems in the class of subsmooth maps”, Math. Notes, 99:4 (2016), 619–622 | DOI | MR | Zbl

[6] I. V. Orlov, “Introduction to sublinear analysis”, Contemp. Math. Fundam. Direct., 53 (2014), 64–132 (in Russian) | MR

[7] I. V. Orlov, S. I. Smirnova, “Invertibility of multivalued sublinear operators”, Eurasian Math. J., 6:4 (2015), 44–58 | MR

[8] J. H. Rädström, “An embedding theorem for space of convex sets”, Proc. Amer. Math. Soc., 3 (1952), 165–169 | DOI | MR | Zbl

[9] W. Roth, “Hahn–Banach type theorems for locally convex cones”, Journal of the Australian Math. Soc. (Ser. A), 68:1 (2000), 104–125 | DOI | MR | Zbl

[10] P. Selinger, “Towards a semantics for higher-order quantum computation”, Proceedings of the 2nd International Workshop on Quantum Programming Languages, Turku Centre for Computer Science General Publication, 33, 2004, 127–143

[11] F. S. Stonyakin, “Analogs of the Shauder theorem that use anticompacta”, Math. Notes, 99:6 (2016), 954–958 | DOI | MR | Zbl