Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2016_7_3_a7, author = {F. S. Stonyakin}, title = {An analogue of the {Hahn--Banach} theorem for functionals on abstract convex cones}, journal = {Eurasian mathematical journal}, pages = {89--99}, publisher = {mathdoc}, volume = {7}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2016_7_3_a7/} }
F. S. Stonyakin. An analogue of the Hahn--Banach theorem for functionals on abstract convex cones. Eurasian mathematical journal, Tome 7 (2016) no. 3, pp. 89-99. http://geodesic.mathdoc.fr/item/EMJ_2016_7_3_a7/
[1] E. G. Bakhtigareeva, M. L. Goldman, “Associate norms and optimal embeddings for a class of two-weighted integral quasi-norms”, Fund. Appl. Math., 19:5 (2014), 3–33 (in Russian) | MR
[2] E. G. Bakhtigareeva, “Optimal Banach function space for a given cone of decreasing functions in a weighted $L_p$-space”, Eurasian Math. J., 6:1 (2015), 6–25 | MR
[3] M. L. Goldman, P. P. Zapreiko, “Optimal Banach function spaces generalized with the cone of nonnegative increasing functions”, Trans. Inst. Math. Nat. Akad. Sci. Belarus, 22:1 (2014), 24–34 (in Russian)
[4] K. Keimel, “Topological Cones: Functional Analysis in a $T_0$-Setting”, Semigroup Forum, 77 (2008), 109–142 | DOI | MR | Zbl
[5] I. V. Orlov, “Inverse and implicat function theorems in the class of subsmooth maps”, Math. Notes, 99:4 (2016), 619–622 | DOI | MR | Zbl
[6] I. V. Orlov, “Introduction to sublinear analysis”, Contemp. Math. Fundam. Direct., 53 (2014), 64–132 (in Russian) | MR
[7] I. V. Orlov, S. I. Smirnova, “Invertibility of multivalued sublinear operators”, Eurasian Math. J., 6:4 (2015), 44–58 | MR
[8] J. H. Rädström, “An embedding theorem for space of convex sets”, Proc. Amer. Math. Soc., 3 (1952), 165–169 | DOI | MR | Zbl
[9] W. Roth, “Hahn–Banach type theorems for locally convex cones”, Journal of the Australian Math. Soc. (Ser. A), 68:1 (2000), 104–125 | DOI | MR | Zbl
[10] P. Selinger, “Towards a semantics for higher-order quantum computation”, Proceedings of the 2nd International Workshop on Quantum Programming Languages, Turku Centre for Computer Science General Publication, 33, 2004, 127–143
[11] F. S. Stonyakin, “Analogs of the Shauder theorem that use anticompacta”, Math. Notes, 99:6 (2016), 954–958 | DOI | MR | Zbl