An analogue of the Hahn--Banach theorem for functionals on abstract convex cones
Eurasian mathematical journal, Tome 7 (2016) no. 3, pp. 89-99

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove an analogue of the Hahn–Banach theorem on the extension of a linear functional with a convex estimate for each abstract convex cone with the cancellation law. Also we consider the special class of the so-called strict convex normed cones $(SCNC)$. For such structures we obtain an appropriate analogue of the Hahn–Banach separation theorem. On the base of this result we prove that each $(SCNC)$ is sublinearly, injectively and isometrically embedded in some Banach space.
@article{EMJ_2016_7_3_a7,
     author = {F. S. Stonyakin},
     title = {An analogue of the {Hahn--Banach} theorem for functionals on abstract convex cones},
     journal = {Eurasian mathematical journal},
     pages = {89--99},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2016_7_3_a7/}
}
TY  - JOUR
AU  - F. S. Stonyakin
TI  - An analogue of the Hahn--Banach theorem for functionals on abstract convex cones
JO  - Eurasian mathematical journal
PY  - 2016
SP  - 89
EP  - 99
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2016_7_3_a7/
LA  - en
ID  - EMJ_2016_7_3_a7
ER  - 
%0 Journal Article
%A F. S. Stonyakin
%T An analogue of the Hahn--Banach theorem for functionals on abstract convex cones
%J Eurasian mathematical journal
%D 2016
%P 89-99
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2016_7_3_a7/
%G en
%F EMJ_2016_7_3_a7
F. S. Stonyakin. An analogue of the Hahn--Banach theorem for functionals on abstract convex cones. Eurasian mathematical journal, Tome 7 (2016) no. 3, pp. 89-99. http://geodesic.mathdoc.fr/item/EMJ_2016_7_3_a7/