The composition operator in Sobolev Morrey spaces
Eurasian mathematical journal, Tome 7 (2016) no. 2, pp. 50-67

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove sufficent conditions on a map $f$ from the real line to itself in order that the composite map $f \circ g$ belongs to a Sobolev Morrey space of real valued functions on a domain of the $n$-dimensional space for all functions $g$ in such a space. Then we prove sufficient conditions on f in order that the composition operator $T_f$ defined by $T_f [g] \equiv f\circ g$ for all functions $g$ in the Sobolev Morrey space is continuous, Lipschitz continuous and differentiable in the Sobolev Morrey space. We confine the attention to Sobolev Morrey spaces of order up to one.
@article{EMJ_2016_7_2_a3,
     author = {N. Kydyrmina and M. Lanza de Cristoforis},
     title = {The composition operator in {Sobolev} {Morrey} spaces},
     journal = {Eurasian mathematical journal},
     pages = {50--67},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a3/}
}
TY  - JOUR
AU  - N. Kydyrmina
AU  - M. Lanza de Cristoforis
TI  - The composition operator in Sobolev Morrey spaces
JO  - Eurasian mathematical journal
PY  - 2016
SP  - 50
EP  - 67
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a3/
LA  - en
ID  - EMJ_2016_7_2_a3
ER  - 
%0 Journal Article
%A N. Kydyrmina
%A M. Lanza de Cristoforis
%T The composition operator in Sobolev Morrey spaces
%J Eurasian mathematical journal
%D 2016
%P 50-67
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a3/
%G en
%F EMJ_2016_7_2_a3
N. Kydyrmina; M. Lanza de Cristoforis. The composition operator in Sobolev Morrey spaces. Eurasian mathematical journal, Tome 7 (2016) no. 2, pp. 50-67. http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a3/