The composition operator in Sobolev Morrey spaces
Eurasian mathematical journal, Tome 7 (2016) no. 2, pp. 50-67
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we prove sufficent conditions on a map $f$ from the real line to itself in order that the composite map $f \circ g$ belongs to a Sobolev Morrey space of real valued functions on a domain of the $n$-dimensional space for all functions $g$ in such a space. Then we prove sufficient conditions on f in order that the composition operator $T_f$ defined by $T_f [g] \equiv f\circ g$ for all functions $g$ in the Sobolev Morrey space is continuous, Lipschitz continuous and differentiable in the Sobolev Morrey space. We confine the attention to Sobolev Morrey spaces of order up to one.
@article{EMJ_2016_7_2_a3,
author = {N. Kydyrmina and M. Lanza de Cristoforis},
title = {The composition operator in {Sobolev} {Morrey} spaces},
journal = {Eurasian mathematical journal},
pages = {50--67},
publisher = {mathdoc},
volume = {7},
number = {2},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a3/}
}
N. Kydyrmina; M. Lanza de Cristoforis. The composition operator in Sobolev Morrey spaces. Eurasian mathematical journal, Tome 7 (2016) no. 2, pp. 50-67. http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a3/