Open neighbourhood colouring of some path related graphs
Eurasian mathematical journal, Tome 6 (2015) no. 4, pp. 77-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

An open neighbourhood $k$-colouring of a simple connected undirected graph $G(V,E)$ is a $k$-colouring $c : V\to \{1,2,\dots,k\}$, such that, for every $w \in V$ and for all $u,v \in N(w)$, $c(u) \ne c(v)$. The minimal value of $k$ for which $G$ admits an open neighbourhood $k$-colouring is called the open neighbourhood chromatic number of $G$ and is denoted by $\chi_{onc} (G)$. In this paper, we obtain the open neighbourhood chromatic number of the line graph and total graph of a path $P_n$. We also obtain the open neighbourhood chromatic number of two families of graphs which are derived from a path $P_n$, namely $k^{th}$ power of a path and transformation graph of a path.
@article{EMJ_2015_6_4_a6,
     author = {N. N. Swamy and B. Sooryanarayana},
     title = {Open neighbourhood colouring of some path related graphs},
     journal = {Eurasian mathematical journal},
     pages = {77--91},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_4_a6/}
}
TY  - JOUR
AU  - N. N. Swamy
AU  - B. Sooryanarayana
TI  - Open neighbourhood colouring of some path related graphs
JO  - Eurasian mathematical journal
PY  - 2015
SP  - 77
EP  - 91
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2015_6_4_a6/
LA  - en
ID  - EMJ_2015_6_4_a6
ER  - 
%0 Journal Article
%A N. N. Swamy
%A B. Sooryanarayana
%T Open neighbourhood colouring of some path related graphs
%J Eurasian mathematical journal
%D 2015
%P 77-91
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2015_6_4_a6/
%G en
%F EMJ_2015_6_4_a6
N. N. Swamy; B. Sooryanarayana. Open neighbourhood colouring of some path related graphs. Eurasian mathematical journal, Tome 6 (2015) no. 4, pp. 77-91. http://geodesic.mathdoc.fr/item/EMJ_2015_6_4_a6/

[1] B. Basavanagoud, V. P. Prashant, “Edge decomposition of the transformation graph $G^{xyz}$ when $xyz=++-$”, J. Comp. Math. Sci., 1:5 (2010), 606–616

[2] E. Bertram, P. Horak, “Some applications of graph theory to other parts of mathematics”, The Mathematical Intelligencer, 21:3 (1999), 6–11 | DOI | MR | Zbl

[3] F. Buckley, F. Harary, Distance in graphs, Addison-Wesley, 1990 | MR | Zbl

[4] S. B. Chandrakala, K. Manjula, B. Sooryanarayana, “The transformation graph $G_{xyz}$ when $xyz=++-$”, International J. of Math. Sci. Engg. Appls., 3:1 (2009), 249–259 | Zbl

[5] G. Chartrand, P. Zhang, Chromatic graph theory, Chapman Hall/CRC Press, 2008 | MR

[6] J. A. Gallian, “A dynamic survey of graph labeling”, The Electronic Journal of Combinatorics, 18 (2011), DS6 | MR

[7] K. N. Geetha, K. N. Meera, N. Narahari, B. Sooryanarayana, “Open neighborhood colouring of graphs”, International Journal of Contemporary Mathematical Sciences, 8 (2013), 675–686 | MR

[8] K. N. Geetha, K. N. Meera, N. Narahari, B. Sooryanarayana, “Open neighborhood colouring of Prisms”, Journal of Mathematical and Fundamental Sciences, 45A:3 (2013), 245–262 | MR

[9] J. R. Griggs, R. K. Yeh, “Labeling graphs with a condition at distance 2”, SIAM Journal of Discrete Mathematics, 5 (1992), 586–595 | DOI | MR | Zbl

[10] R. P. Gupta, “Bounds on the chromatic and achromatic numbers of complementary graphs”, Recent Progress in Combinatorics, Academic Press, New York, 1969, 229–235 | MR

[11] F. Harary, Graph theory, Narosa Publishing House, New Delhi, 1969 | MR

[12] G. Hartsfield, Ringel, Pearls in graph theory, Academic Press, USA, 1994 | MR

[13] F. Havet, Graph colouring and applications, Project Mascotte, CNRS/INRIA/UNSA, France, 2011

[14] T. R. Jensen, B. Toft, Graph colouring problems, John Wiley Sons, New York, 1995 | MR

[15] S. Pirzada, A. Dharwadker, “Applications of graph theory”, Journal of the Korean Society for Industrial and Applied Mathematics, 11 (2007), 19–38

[16] Lei Yi, Baoyindureng Wu, “The transformation graph $C^{++-}$”, Australasian Journal of Combinatorics, 44 (2009), 37–42 | MR | Zbl

[17] N. Narahari, B. Sooryanarayana, K. N. Geetha, “Open neighborhood chromatic number of an antiprism graph”, Applied Mathematics E-Notes, 15 (2015), 54–62 | MR | Zbl

[18] F. S. Roberts, “From Garbage to Rainbows: Generalizations of graph colouring and their applications in graph theory”, Combinatorics and Applications, v. 2, eds. Y. Alavi, G. Chartrand, O. R. Oellermann, A. J. Schwenk, Wiley, New York, 1991, 1031–1052 | MR | Zbl

[19] B. Wu, J. Meng, “Basic properties of total transformation graphs”, J. Math. Study, 34:2 (2001), 109–116 | MR | Zbl

[20] Z. Zhang, X. Huang, “Connectivity of transformation graph $G^{+-+}$”, Graph Theory Notes of New York, XLIII (2002), 35–38 | MR