Open neighbourhood colouring of some path related graphs
Eurasian mathematical journal, Tome 6 (2015) no. 4, pp. 77-91

Voir la notice de l'article provenant de la source Math-Net.Ru

An open neighbourhood $k$-colouring of a simple connected undirected graph $G(V,E)$ is a $k$-colouring $c : V\to \{1,2,\dots,k\}$, such that, for every $w \in V$ and for all $u,v \in N(w)$, $c(u) \ne c(v)$. The minimal value of $k$ for which $G$ admits an open neighbourhood $k$-colouring is called the open neighbourhood chromatic number of $G$ and is denoted by $\chi_{onc} (G)$. In this paper, we obtain the open neighbourhood chromatic number of the line graph and total graph of a path $P_n$. We also obtain the open neighbourhood chromatic number of two families of graphs which are derived from a path $P_n$, namely $k^{th}$ power of a path and transformation graph of a path.
@article{EMJ_2015_6_4_a6,
     author = {N. N. Swamy and B. Sooryanarayana},
     title = {Open neighbourhood colouring of some path related graphs},
     journal = {Eurasian mathematical journal},
     pages = {77--91},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_4_a6/}
}
TY  - JOUR
AU  - N. N. Swamy
AU  - B. Sooryanarayana
TI  - Open neighbourhood colouring of some path related graphs
JO  - Eurasian mathematical journal
PY  - 2015
SP  - 77
EP  - 91
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2015_6_4_a6/
LA  - en
ID  - EMJ_2015_6_4_a6
ER  - 
%0 Journal Article
%A N. N. Swamy
%A B. Sooryanarayana
%T Open neighbourhood colouring of some path related graphs
%J Eurasian mathematical journal
%D 2015
%P 77-91
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2015_6_4_a6/
%G en
%F EMJ_2015_6_4_a6
N. N. Swamy; B. Sooryanarayana. Open neighbourhood colouring of some path related graphs. Eurasian mathematical journal, Tome 6 (2015) no. 4, pp. 77-91. http://geodesic.mathdoc.fr/item/EMJ_2015_6_4_a6/