Invertibility of multivalued sublinear operators
Eurasian mathematical journal, Tome 6 (2015) no. 4, pp. 44-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the representation of a compact-valued sublinear operator ($K$-operator) by means of the compact convex packet of single-valued so-called basis selectors. Such representation makes it possible to introduce the concept of an invertible $K$-operator via invertible selectors. The extremal points of direct and inverse selector representations are described, an analogue of the von Neumann theorem is obtained. A series of examples is considered.
@article{EMJ_2015_6_4_a4,
     author = {I. V. Orlov and S. I. Smirnova},
     title = {Invertibility of multivalued sublinear operators},
     journal = {Eurasian mathematical journal},
     pages = {44--58},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_4_a4/}
}
TY  - JOUR
AU  - I. V. Orlov
AU  - S. I. Smirnova
TI  - Invertibility of multivalued sublinear operators
JO  - Eurasian mathematical journal
PY  - 2015
SP  - 44
EP  - 58
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2015_6_4_a4/
LA  - en
ID  - EMJ_2015_6_4_a4
ER  - 
%0 Journal Article
%A I. V. Orlov
%A S. I. Smirnova
%T Invertibility of multivalued sublinear operators
%J Eurasian mathematical journal
%D 2015
%P 44-58
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2015_6_4_a4/
%G en
%F EMJ_2015_6_4_a4
I. V. Orlov; S. I. Smirnova. Invertibility of multivalued sublinear operators. Eurasian mathematical journal, Tome 6 (2015) no. 4, pp. 44-58. http://geodesic.mathdoc.fr/item/EMJ_2015_6_4_a4/

[1] E. R. Avakov, G. G. Magaril-Il'aev, V. M. Tikhomirov, “Lagrange's principle in extremum problem with constraints”, Russian Math. Surveys, 68:3 (2013), 401 | DOI | MR | Zbl

[2] J. M. Borwein, J. P. Penot, M. Thera, “Conjugate convex operators”, J. Math. Anal. Appl., 102:2 (1984), 399 | DOI | MR | Zbl

[3] H. Cartan, Calcul differentiel. Formes differentielles, Hermann, Paris, 1967, 392 pp. | MR

[4] F. H. Clark, Optimization and nonsmooth analysis, Wiley, New York, 1983, 280 pp. | MR | Zbl

[5] N. Dunford, J. I. Schwarcz, Linear operators. General theory, Interscience Publ., New York–London, 1958, 896 pp. | Zbl

[6] J. Dutta, J. E. Martiner-Legaz, A. M. Rubinov, “Monotonic analysis over Cones, I”, Optimization, 53:2 (2004), 129 | DOI | MR | Zbl

[7] F. Florez-Bazán, E. Hermandes, “A unified vector optimization problem: complete scalarizations and applications”, Optimization, 60:12 (2011), 1399 | DOI | MR

[8] A. D. Ioffe, “Metric regularity and subdifferential calculus”, Russian Math. Surveys, 55:3 (2000), 501 | DOI | MR | Zbl

[9] V. A. Levashov, “Operator analogs of the Krein–Milman theorem”, Funct. Anal. Appl., 14:2 (1980), 130–131 | DOI | MR | Zbl

[10] Yu. E. Linke, “Universal spaces of subdifferentials of sublinear operators ranging in the cone of bounded lower semicontinuous functions”, Math. Notes, 89:314 (2011), 519–527 | DOI | MR | Zbl

[11] G. G. Magaril-Il'aev, “The implicit function theorem for Lipschitz maps”, Russian Math. Surveys, 33:1 (1977), 209 | DOI

[12] G. E. Myrzabekova, “Implicit function theorem for nonsmooth system by means of exhausters”, J. Computer Syst. Sc. Int., 48:4 (2009), 574–580 | DOI | MR

[13] I. V. Orlov, “Banach–Zaretsky theorem for compactly absolutely continuous functions”, J. Math. Sc., 180:6 (2012), 710–730 | DOI | MR | Zbl

[14] I. V. Orlov, Z. I. Khalilova, “Compact subdifferentials in Banach cones”, J. Math. Sc., 198:4 (2014), 438–456 | DOI | MR | Zbl

[15] I. V. Orlov, F. S. Stonyakin, “Compact subdifferentials: the formula of finite increments and related topics”, J. Math. Sc., 170:12 (2010), 251–269 | DOI | MR | Zbl

[16] I. V. Orlov, F. S. Stonyakin, “The limiting form of Radon–Nikodim property is true for all Frechet spaces”, J. Math. Sc., 180:6 (2012), 731–747 | DOI | MR | Zbl

[17] V. Yu. Protasov, “On linear selections on convex set-valued maps”, Funct. Anal. Appl., 45:1 (2011), 46–55 | DOI | MR | Zbl

[18] A. M. Rubinov, “Sublinear operators and their applications”, Russian Math. Surveys, 32:4 (1977), 115–175 | DOI | MR | Zbl

[19] H. H. Shaefer, Topological vector spaces, Macmillan, New York, 1971, 400 pp.