On finite-dimensional Banach spaces in which suns are connected
Eurasian mathematical journal, Tome 6 (2015) no. 4, pp. 7-18

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper extends and refines some results on the connectedness of suns in finite-dimensional normed linear spaces. In particular, a sun in a finite-dimensional $(BM)$-space is shown to be monotone path-connected and having a continuous multiplicative (additive) $\varepsilon$-selection from the operator of nearly best approximation for any $\varepsilon>0$. New properties of $(BM)$-space are put forward.
@article{EMJ_2015_6_4_a1,
     author = {A. R. Alimov},
     title = {On finite-dimensional {Banach} spaces in which suns are connected},
     journal = {Eurasian mathematical journal},
     pages = {7--18},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_4_a1/}
}
TY  - JOUR
AU  - A. R. Alimov
TI  - On finite-dimensional Banach spaces in which suns are connected
JO  - Eurasian mathematical journal
PY  - 2015
SP  - 7
EP  - 18
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2015_6_4_a1/
LA  - en
ID  - EMJ_2015_6_4_a1
ER  - 
%0 Journal Article
%A A. R. Alimov
%T On finite-dimensional Banach spaces in which suns are connected
%J Eurasian mathematical journal
%D 2015
%P 7-18
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2015_6_4_a1/
%G en
%F EMJ_2015_6_4_a1
A. R. Alimov. On finite-dimensional Banach spaces in which suns are connected. Eurasian mathematical journal, Tome 6 (2015) no. 4, pp. 7-18. http://geodesic.mathdoc.fr/item/EMJ_2015_6_4_a1/