Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2015_6_4_a1, author = {A. R. Alimov}, title = {On finite-dimensional {Banach} spaces in which suns are connected}, journal = {Eurasian mathematical journal}, pages = {7--18}, publisher = {mathdoc}, volume = {6}, number = {4}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_4_a1/} }
A. R. Alimov. On finite-dimensional Banach spaces in which suns are connected. Eurasian mathematical journal, Tome 6 (2015) no. 4, pp. 7-18. http://geodesic.mathdoc.fr/item/EMJ_2015_6_4_a1/
[1] A. R. Alimov, “Monotone path-connectedness and solarity of Menger-connected sets in Banach spaces”, Izvestiya: Mathematics, 78:4 (2014), 641–655 | DOI | MR | Zbl
[2] A. R. Alimov, “The Rainwater–Simons weak convergence theorem for the Brown associated norm”, Eurasian Math. J., 5:2 (2014), 126–131 | MR | Zbl
[3] A. R. Alimov, “Monotone path-connectedness of $R$-weakly convex sets in spaces with linear ball embedding”, Eurasian Math. J., 3:2 (2012), 21–30 | MR | Zbl
[4] A. R. Alimov, “Connectedness of suns in the space $c_0$”, Izvestiya: Mathematics, 69:4 (2005), 3–18 | DOI | MR | Zbl
[5] A. R. Alimov, “Convexity of Chebyshev sets contained in a subspace”, Math. Notes, 78:1 (2005), 3–15 | DOI | MR | Zbl
[6] A. R. Alimov, “Local solarity of suns in normed linear spaces”, Fundam. Prikl. Mat., 17:7 (2011/2012), 3–14 | MR
[7] A. R. Alimov, “Monotone path-connectedness of Chebyshev sets in the space $C(Q)$”, Sbornik: Mathematics, 197:9 (2006), 3–18 | DOI | MR | Zbl
[8] A. R. Alimov, V. Yu. Protasov, “Separation of convex sets by extreme hyperplanes”, Fundam. Prikl. Mat., 17:4 (2011/2012), 3–12 | MR
[9] A. R. Alimov, I. G. Tsar'kov, “Connectedness and other geometric properties of suns and Chebyshev sets”, Fundam. Prikl. Matem., 19:4 (2014), 21–91
[10] B. B. Bednov, P. A. Borodin, “Banach spaces that realize minimal fillings”, Sbornik: Mathematics, 205:4 (2014), 459–475 | DOI | MR | Zbl
[11] H. Berens, L. Hetzelt, “Die metrische Struktur der Sonnen in $l^\infty(n)$”, Aequat. Math., 27 (1984), 274–287 | DOI | MR | Zbl
[12] V. Boltyanski, H. Martini, P. S. Soltan, Excursions into combinatorial geometry, Springer, Berlin, 1997 | MR | Zbl
[13] A. L. Brown, “Suns in polyhedral spaces”, Seminar of Mathem. Analysis, Proceedings (Univ. Malaga and Seville, Spain, Sept. 2002–Feb. 2003), eds. D. G. Álvarez, G. Lopez Acedo, R. V. Caro, Universidad de Sevilla, Sevilla, 2003, 139–146 | MR | Zbl
[14] A. L. Brown, “Suns in normed linear spaces which are finite-dimensional”, Math. Ann., 279 (1987), 87–101 | DOI | MR | Zbl
[15] A. L. Brown, “On the connectedness properties of suns in finite dimensional spaces”, Proc. Cent. Math. Anal. Aust. Natl. Univ., 20 (1988), 1–15 | MR | Zbl
[16] A. L. Brown, “On the problem of characterising suns in finite dimensional spaces”, Rend. Circ. Math. Palermo Ser. II, 68 (2002), 315–328 | MR | Zbl
[17] A. S. Granero, J. P. Moreno, R. R. Phelps, “Mazur sets in normed spaces”, Discrete Comput Geom., 31 (2004), 411–420 | DOI | MR | Zbl
[18] C. Franchetti, S. Roversi, Suns, M-connected sets and P-acyclic sets in Banach spaces, Preprint No 50139, Instituto di Matematica Applicata “G. Sansone”, 1988, 29 pp. | MR
[19] L. Hetzelt, “On suns and cosuns in finite-dimensional normed real vector spaces”, Acta Math. Hungar., 45:1–2 (1985), 53–68 | DOI | MR | Zbl
[20] V. A. Koshcheev, “The connectivity and approximative properties of sets in linear normed spaces”, Math. Notes, 17:2 (1975), 114–119 | DOI | Zbl
[21] Å. Lima, “Banach spaces with the 4.3 intersection property”, Proc. Amer. Math. Soc., 80 (1980), 431–434 | MR | Zbl
[22] J. P. Moreno, R. Schneider, “Intersection properties of polyhedral norms”, Adv. Geom., 7:3 (2007), 391–402 | DOI | MR | Zbl
[23] I. G. Tsar'kov, “Nonunique solvability of certain differential equations and their connection with geometric approximation theory”, Math. Notes, 75:2 (2004), 287–301 | MR | Zbl
[24] Sbornik: Mathematics | DOI | MR
[25] L. P. Vlasov, “Approximative properties of sets in normed linear spaces”, Russian Math. Surveys, 28:6 (1973), 3–66 | DOI | MR | Zbl