Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2015_6_3_a5, author = {I. V. Tsylin}, title = {On the smoothness of solutions to elliptic equations in domains {with~H\"older} boundary}, journal = {Eurasian mathematical journal}, pages = {76--92}, publisher = {mathdoc}, volume = {6}, number = {3}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a5/} }
I. V. Tsylin. On the smoothness of solutions to elliptic equations in domains with~H\"older boundary. Eurasian mathematical journal, Tome 6 (2015) no. 3, pp. 76-92. http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a5/
[1] O. V. Besov, V. P. Il'in, S. M. Nikolskii, Integral representations of functions and embedding theorems, Wiley, N.Y., 1978
[2] H. Brezis, Analyse fonctionnelle — Théorie et applications, Masson, Paris, 1983 | MR
[3] M. L. Gol'dman, “Imbedding theorems for anisotropic Nikol'skij Besov spaces with moduli of continuity of general form”, Proc. Steklov Inst. Math., 170, 1987, 95–116 | Zbl
[4] P. Grisvard, Elliptic problems in nonsmooth domains, Pitman, L., 1985 | MR | Zbl
[5] T. Kato, Perturbation theory for linear operators, Springer-Verlag, N.Y., 1966 | MR | Zbl
[6] D. Jerison, C. Kenig, “Boundary value problems on Lipschitz domains”, Studies in Partial Differential Equations, 23 (1982), 1–68 | MR | Zbl
[7] T. Muramatu, “On the dual of Besov spaces”, Publ. Res. Inst. Math. Kyoto Univ., 12, 1976, 123–140 | DOI | MR
[8] S. M. Nikolskii, Approximation of functions of several variables and embedding theorems, Army Foreign Science And Technology Center, Charlottesville, VA, 1971
[9] S. M. Nikolskii, “Properties of certain classes of functions of several variables on differentiable manifolds”, Math. sb., 33(75):2 (1953), 261–326 (in Russian) | MR
[10] V. S. Rychkov, “On restrictions and extensions of the Besov and Triebel–Lizorkin spaces with respect to Lipschitz domains”, J. London Math. Soc., 60 (1999), 237–257 | DOI | MR | Zbl
[11] G. Savaré, “Regularity results for elliptic equations in Lipschitz domains”, J. Funct. Anal., 152 (1998), 176–201 | DOI | MR | Zbl
[12] G. Savaré, G. Schimperna, “Domain perturbations estimates for the solutions of second order elliptic equations”, J. Math. Pures Appl., 81:11 (2002), 1071–1112 | DOI | MR | Zbl
[13] A. M. Stepin, I. V. Tsylin, “On boundary value problems for elliptic operators in the case of domains on manifolds”, Doklady Mathematics, 92:1 (2015), 428–432 | DOI | Zbl
[14] H. Triebel, Theory of function spaces, Reprint of the 1983 Edition, Birkhauser, Basel, 2010 | MR