Multidimensional variational functionals with subsmooth integrands
Eurasian mathematical journal, Tome 6 (2015) no. 3, pp. 54-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we establish a base of investigation of multidimensional variational functionals having $C^1$-subsmooth or $C^2$-subsmooth integrands. First, an estimate of the first $K$-variation for the multidimensional variational functional having a $C^1$-subsmooth integrand is obtained and numerous partial cases are studied. Secondly, we have obtained $C^1$-subsmooth generalizations of the basic variational lemma and Euler–Ostrogradskii equation. Finally, for the $C^2$-subsmooth case, an estimate of the second $K$-variational is obtained and a series of the partial cases is studied as well.
@article{EMJ_2015_6_3_a4,
     author = {I. V. Orlov and A. V. Tsygankova},
     title = {Multidimensional variational functionals with subsmooth integrands},
     journal = {Eurasian mathematical journal},
     pages = {54--75},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a4/}
}
TY  - JOUR
AU  - I. V. Orlov
AU  - A. V. Tsygankova
TI  - Multidimensional variational functionals with subsmooth integrands
JO  - Eurasian mathematical journal
PY  - 2015
SP  - 54
EP  - 75
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a4/
LA  - en
ID  - EMJ_2015_6_3_a4
ER  - 
%0 Journal Article
%A I. V. Orlov
%A A. V. Tsygankova
%T Multidimensional variational functionals with subsmooth integrands
%J Eurasian mathematical journal
%D 2015
%P 54-75
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a4/
%G en
%F EMJ_2015_6_3_a4
I. V. Orlov; A. V. Tsygankova. Multidimensional variational functionals with subsmooth integrands. Eurasian mathematical journal, Tome 6 (2015) no. 3, pp. 54-75. http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a4/

[1] E. K. Basayeva, “On subdifferentials of no everywhere defined convex operators”, Vladikavkazkii Mat. Zhurnal, 8:4 (2006), 6–12 (in Russian) | MR

[2] D. P. Bertsekas, A. Nedid, A. E. Ozdaglar, Convex Analysis and Optimization, Athena Scientific, Belmont, Massachusetts, 2003, 560 pp. | MR | Zbl

[3] J. M. Borwein, Q. J. Zhu, “A survey of subdifferential calculus with applications”, Nonlinear Anal. Ser. A: Theory Methods, 38:6 (1999), 62–76 | DOI | MR

[4] E. V. Bozhonok, E. M. Kuzmenko, “Conditions of compact extremum of the main variational functional in the scale of Sobolev spaces on the multidimensional area”, Nelineynie Granichnie Zadachi, 21, IPMM NAN Ukraini, Donetsk, 2012, 9–26 (in Russian)

[5] F. Clark, Optimization and nonsmooth analysis, Nauka, M., 1988, 280 pp. (in Russian) | MR | Zbl

[6] B. Dacorogna, Introduction to the calculus of variations, Imperial College Press, London, 2004, 228 pp. | MR

[7] Z. I. Khalilova, “Extreme variational problems with subsmooth integrand”, Uchenie zapiski TNU im. Vernadskogo, 27(66):1 (2014), 125–153 (in Russian)

[8] Z. I. Khalilova, “Compact subdifferentsials of higher orders and their applications to variational problems”, Dinamicheskie sistemi, 3(31):1–2 (2013), 115–134 (in Russian)

[9] Z. I. Khalilova, Compact subdifferentials in Banach cones and their applications in the calculus of variations, Ph. D. tes., 2014, 164 pp. (in Russian)

[10] I. V. Orlov, “Introduction to sublinear analysis”, Sovrem. Mat. Fundam. Napravl., 53 (2014), 64–132 (in Russian)

[11] I. V. Orlov, “Compact-analytical properties of variational functional in Sobolev spaces $W^{1,p}$”, Eurasian Math. J., 3:2 (2012), 94–119 | MR | Zbl

[12] Ukr. Mat. Visn., 10:4 (2013), 532–558 (in Russian) | DOI | MR | Zbl

[13] I. V. Orlov, Z. I. Khalilova, “Compact subdifferentials in Banach spaces and their application to variational functionals”, Sovrem. Mat. Fundam. Napravl., 2013, no. 49, 99–131 (in Russian)

[14] Sovrem. Mat., Fundam. Napravl., 2009, no. 34, 121–138 (in Russian) | DOI | MR | Zbl

[15] I. V. Orlov, F. S. Stonyakin, “Compact variation, compact subdifferentiability and indefinite Bochner integral”, Methods of Functional Analysis and Topology, 15:1 (2009), 74–90 | MR | Zbl

[16] E. S. Polovinkin, Convex analysis, text book, Moscow Institute of Physics and Technology (Technical Uniersity), M., 2006, 34 pp. (in Russian)

[17] E. S. Polovinkin, M. V. Balashov, Elements of convex and strongly convex analysis, Fizmatlit, M., 2004, 415 pp. (in Russian)

[18] B. N. Pshenichnii, Convex analysis and extremal problems, Nauka, M., 1971, 320 pp. (in Russian) | MR

[19] R. Rockafellar, Convex analysis, Mir, M., 1973, 472 pp. (in Russian) | Zbl

[20] F. S. Stonyakin, “Comparison of compact subdifferential with the Clarke subdifferential, Frechet and generalized Sussman subdifferentials”, Komputernaya matematica, 2008, no. 2, 50–56 (in Russian)