Multidimensional variational functionals with subsmooth integrands
Eurasian mathematical journal, Tome 6 (2015) no. 3, pp. 54-75

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we establish a base of investigation of multidimensional variational functionals having $C^1$-subsmooth or $C^2$-subsmooth integrands. First, an estimate of the first $K$-variation for the multidimensional variational functional having a $C^1$-subsmooth integrand is obtained and numerous partial cases are studied. Secondly, we have obtained $C^1$-subsmooth generalizations of the basic variational lemma and Euler–Ostrogradskii equation. Finally, for the $C^2$-subsmooth case, an estimate of the second $K$-variational is obtained and a series of the partial cases is studied as well.
@article{EMJ_2015_6_3_a4,
     author = {I. V. Orlov and A. V. Tsygankova},
     title = {Multidimensional variational functionals with subsmooth integrands},
     journal = {Eurasian mathematical journal},
     pages = {54--75},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a4/}
}
TY  - JOUR
AU  - I. V. Orlov
AU  - A. V. Tsygankova
TI  - Multidimensional variational functionals with subsmooth integrands
JO  - Eurasian mathematical journal
PY  - 2015
SP  - 54
EP  - 75
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a4/
LA  - en
ID  - EMJ_2015_6_3_a4
ER  - 
%0 Journal Article
%A I. V. Orlov
%A A. V. Tsygankova
%T Multidimensional variational functionals with subsmooth integrands
%J Eurasian mathematical journal
%D 2015
%P 54-75
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a4/
%G en
%F EMJ_2015_6_3_a4
I. V. Orlov; A. V. Tsygankova. Multidimensional variational functionals with subsmooth integrands. Eurasian mathematical journal, Tome 6 (2015) no. 3, pp. 54-75. http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a4/