Degeneration of Steklov–type boundary conditions in one spectral homogenization problem
Eurasian mathematical journal, Tome 6 (2015) no. 3, pp. 13-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a singularly perturbed Steklov–type problem for the second order linear elliptic equation in a bounded two–dimensional domain. We assume that the Steklov spectral condition rapidly alternates with the homogeneous Dirichlet condition on the boundary. The alternating parts of the boundary with the Dirichlet and Steklov conditions have the same small length of order $\varepsilon$. It is proved that when the small parameter tends to zero the eigenvalues of this problem degenerate, i.e. they tend to infinity. Moreover, it is proved that the eigenvalues of the initial problem are of order $\varepsilon^{-1}$ when $\varepsilon$ tends to zero.
@article{EMJ_2015_6_3_a1,
     author = {A. G. Chechkina and V. A. Sadovnichy},
     title = {Degeneration of {Steklov{\textendash}type} boundary conditions in one spectral homogenization problem},
     journal = {Eurasian mathematical journal},
     pages = {13--29},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a1/}
}
TY  - JOUR
AU  - A. G. Chechkina
AU  - V. A. Sadovnichy
TI  - Degeneration of Steklov–type boundary conditions in one spectral homogenization problem
JO  - Eurasian mathematical journal
PY  - 2015
SP  - 13
EP  - 29
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a1/
LA  - en
ID  - EMJ_2015_6_3_a1
ER  - 
%0 Journal Article
%A A. G. Chechkina
%A V. A. Sadovnichy
%T Degeneration of Steklov–type boundary conditions in one spectral homogenization problem
%J Eurasian mathematical journal
%D 2015
%P 13-29
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a1/
%G en
%F EMJ_2015_6_3_a1
A. G. Chechkina; V. A. Sadovnichy. Degeneration of Steklov–type boundary conditions in one spectral homogenization problem. Eurasian mathematical journal, Tome 6 (2015) no. 3, pp. 13-29. http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a1/

[1] Sb. Math., 186:4 (1995), 511–525 | DOI | MR | Zbl

[2] A. G. Belyaev, G. A. Chechkin, R. R. Gadyl'shin, “Effective membrane permeability: estimates and low concentration asymptotics”, SIAM J. Appl. Math., 60:1 (2000), 84–108 | DOI | MR

[3] Math. Notes, 65:4 (1999), 418–429 | DOI | DOI | MR | Zbl

[4] E. Berchio, F. Gazzola, D. Pierotti, “Nodal solutions to critical growth elliptic problems under Steklov boundary conditions”, Commun. Pure Appl. Anal., 8:2 (2009), 533–557 | DOI | MR | Zbl

[5] J. F. Bonder, P. Groisman, J. D. Rossi, “Optimization of the first Steklov eigenvalue in domains with holes: a shape derivative approach”, Ann. Math. Pura Appl., 186(4):2 (2007), 341–358 | DOI | MR | Zbl

[6] Math. Notes, 70:3–4 (2001), 471–485 | DOI | DOI | MR | Zbl

[7] D. I. Borisov, “The asymptotics of the eigenelements of the Laplacian in a cylinder with frequently oscillating boundary conditions”, C. R. Acad. Sci. Paris, Ser. II, 329:10 (2001), 717–721

[8] Differ. Equ., 38:8 (2002), 1140–1148 | DOI | MR | Zbl

[9] Dokl. Math., 65:2 (2002), 224–226 | MR | Zbl

[10] Sb. Math., 193:7–8 (2002), 977–1008 | DOI | DOI | MR | Zbl

[11] Sib. Math. J., 45:2 (2004), 222–242 | DOI | MR | Zbl

[12] Theor. Math. Phys., 118:3 (1999), 272–277 | DOI | DOI | MR | Zbl

[13] G. A. Chechkin, “On Boundary-Value Problems for a second order Elliptic Equation with Oscillating Boundary Conditions”, Nonclassical Partial Differential Equations, ed. Vragov V. N., Institute of Mathematics of the Siberian Division of the Academy of Sciences of the USSR (IM SOAN SSSR), Novosibirsk, 1988, 95–104 (in Russian) | MR

[14] G. A. Chechkin, “Spectral properties of an elliptic problem with rapidly oscillating boundary conditions”, Boundary Value Problems for Nonclassical Partial Differential Equations, ed. Vragov V. N., Institute for Mathematics of the Siberian Division of the Academy of Siences of the USSR (IM SOAN SSSR), Novosibirsk, 1989, 197–200 (in Russian) | MR

[15] Rus. Acad. Sci. Sb. Math., 79:1 (1994), 191–222 | MR | MR | Zbl

[16] J. Math. Sci., (N. Y.), 85:6 (1997), 2440–2449 | DOI | MR | Zbl

[17] G. A. Chechkin, “On vibration of partially fastened membrane with many “light” concentrated masses on the boundary”, C. R. Mécanique, 332:12 (2004), 949–954 | DOI | Zbl

[18] Izvestija RAN. Ser. Mat., 69:4 (2005), 161–204 | DOI | DOI | MR | Zbl

[19] Problemy matematicheskogo analiza, 33 (2006), 103–111 | DOI | MR | Zbl

[20] Trudy Moskovskogo Matematicheskogo Obshchestva, 70, 2009, 102–182 | DOI | MR | Zbl

[21] G. A. Chechkin, D. Cioranescu, A. Damlamian, A. L. Piatnitski, “On boundary value problem with singular inhomogeneity concentrated on the boundary”, Journal de Mathématiques Pures et Appliquées, 98:2 (2012), 115–138 | DOI | MR | Zbl

[22] G. A. Chechkin, E. I. Doronina, “On the asymptotics of the spectrum of a boundary value problem with nonperiodic rapidly alternating boundary conditions”, Funct. Differ. Equ., 8, no. 1–2, eds. E. Mitidieri, S. Pohozaev, A. Skubachevskii, Marcel Dekker, 2001, 111–122 | MR

[23] Sib. Math. J., 40:2 (1999), 229–244 | MR | Zbl

[24] G. A. Chechkin, R. R. Gadylshin, “On boundary-value problems for the Laplacian in bounded domains with micro inhomogeneous structure of the boundaries”, Acta Math. Sin., Engl. Ser., 23:2 (2007), 237–248 | DOI | MR | Zbl

[25] Russ. Math. Surv., 48:6 (1993), 173–175 | DOI | MR | Zbl

[26] Russ. Math. Surv., 49:4 (1994), 113–114 | DOI | MR

[27] G. A. Chechkin, O. A. Oleinik, “On asymptotics of solutions and eigenvalues of the boundary value problems with rapidly alternating boundary conditions for the system of elasticity”, Rendiconti Lincei: Matematica e Applicazioni. Serie IX, 7:1 (1996), 5–15 | MR | Zbl

[28] UMN, 57:6 (2002), 195–196 | DOI | DOI | MR | Zbl

[29] G. A. Chechkin, M. E. Pérez, E. I. Yablokova, “Non-periodic boundary homogenization and “light” concentrated masses”, Indiana University Mathematics Journal, 54:2 (2005), 321–348 | DOI | MR | Zbl

[30] G. A. Chechkin, A. L. Piatnitski, A. S. Shamaev, Homogenization. Methods and Applications, Translation of Mathematical Monographs, 234, American Mathematical Society, Providence, RI, 2007 | MR | Zbl

[31] J. Math. Sci. (N.Y.), 162:3 (2009), 443–458 | DOI | MR

[32] Doklady Math., 84:2 (2011), 695–698 | DOI | MR | Zbl

[33] A. Damlamian, Li Ta-Tsien, “Homogénéisation sur le bord pour des problèmes elliptiques”, C. R. Acad. Sci. Paris. Sér. I Math., 299:17 (1984), 859–862 (in French) | MR | Zbl

[34] A. Damlamian, Li Ta-Tsien, “Boundary homogenization for elliptic problems”, J. Math. Pures Appl., 66:4 (1987), 351–361 | MR | Zbl

[35] J. Davila, “A nonlinear elliptic equation with rapidly oscillating alternating boundary conditions”, Asymptotic. Anal., 28:3–4 (2001), 279–307 | MR | Zbl

[36] Deng Shao-Gao, “Eigenvalues of the $p(x)$-Laplacian Steklov problem”, J. Math. Anal. Appl., 339:2 (2008), 925–937 | DOI | MR | Zbl

[37] A. Friedman, Huang Chao Cheng, Yong Jiong Min, “Effective permeability of the boundary of a domain”, Comm. Partial Differential Equations, 20:1–2 (1995), 59–102 | DOI | MR | Zbl

[38] St. Peterburg Math. J., 10:1 (1999), 1–14 | MR | Zbl

[39] Differ. Equ., 35:4 (1999), 540–551 | MR | Zbl

[40] Comput. Math. Math. Phys., 41:12 (2001), 1765–1776 | MR | Zbl

[41] R. V. Isakov, “Asymptotics of a spectral series of the Steklov problem for the Laplace equation in a “thin” domain with a nonsmooth boundary”, Mat. Zametki, 44:5 (1988), 694–696 (in Russian) | MR | Zbl

[42] N. G. Kuznetsov, O. V. Motygin, “The Steklov problem in a half-plane: dependence of eigenvalues on a piecewise-constant coefficient”, J. Math. Sci. (N.Y.), 127:6 (2005), 2429–2445 | DOI | MR

[43] M. Lobo, M. E. Pérez, “Asymptotic behavior of an elastic body with a surface having small stuck regions”, Math Modelling Numerical Anal., 22:4 (1988), 609–624 | MR | Zbl

[44] M. Lobo, M. E. Pérez, “Boundary homogenization of certain elliptical problems for cylindrical bodies”, Bull. Soc. Math. Ser. 2, 116:3 (1992), 399–426 | MR | Zbl

[45] O. V. Motygin, N. G. Kuznetsov, “Eigenvalues of the Steklov problem in an infinite cylinder”, Mathematical and numerical aspects of wave propagation WAVES 2003, Springer-Verlag, Berlin–New York, 463–468 pp. | MR

[46] S. A. Nazarov, J. Taskinen, “On the spectrum of the Steklov problem in a domain with a peak”, Vestnik St. Petersburg Univ. Math., 41:1 (2008), 45–52 | DOI | MR | Zbl

[47] O. A. Oleinik, A. S. Shamaev, G. A. Yosifian, Mathematical Problems in Elasticity and Homogenization, North-Holland, Amsterdam, 1992 | MR | Zbl

[48] O. A. Oleinik, Lectures on the partial differential equations, Classical University Textbook, Binom, M., 2005 | MR

[49] I. Pankratova, A. Piatnitski, “On the behavior at infinity of solutions to stacionary convection-diffusion equation in a cylinder”, Discrete and Continuous Dynamical Systems. Series B, 11:4 (2009), 935–970 | DOI | MR | Zbl

[50] M. E. Pérez, “On periodic Steklov type eigenvalue problems on half-bands and the spectral homogenization problem”, Discrete Contin. Dyn. Syst. Ser. B, 7:4 (2007), 859–883 | DOI | MR | Zbl

[51] V. A. Sadovnichy, Operator Theory, Classical University Textbook, 5-th edition, Drofa, M., 2004

[52] Ufa Math. Journal, 3:3 (2011), 122–134 | Zbl

[53] Doklady Math., 65:3 (2002), 417–420 | MR | Zbl

[54] V. A. Steklov, General methods of solutions to basic problems of mathematical physics, Doctoral Thesis, Empirior Kharkov University, Kharkov, 1901

[55] W. Stekloff, “Sur les problèmes fondamentaux de la physique mathématique”, Ann. Sci. École Norm. Sup., 19 (1902), 455–490 | MR | Zbl

[56] Moscow Univ. Math. Bull., 51:2 (1996), 58–60 | MR | Zbl

[57] V. S. Vladimirov, Equations of mathematical physics, Nauka, M., 1976 | MR