Degeneration of Steklov–type boundary conditions in one spectral homogenization problem
Eurasian mathematical journal, Tome 6 (2015) no. 3, pp. 13-29

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a singularly perturbed Steklov–type problem for the second order linear elliptic equation in a bounded two–dimensional domain. We assume that the Steklov spectral condition rapidly alternates with the homogeneous Dirichlet condition on the boundary. The alternating parts of the boundary with the Dirichlet and Steklov conditions have the same small length of order $\varepsilon$. It is proved that when the small parameter tends to zero the eigenvalues of this problem degenerate, i.e. they tend to infinity. Moreover, it is proved that the eigenvalues of the initial problem are of order $\varepsilon^{-1}$ when $\varepsilon$ tends to zero.
@article{EMJ_2015_6_3_a1,
     author = {A. G. Chechkina and V. A. Sadovnichy},
     title = {Degeneration of {Steklov{\textendash}type} boundary conditions in one spectral homogenization problem},
     journal = {Eurasian mathematical journal},
     pages = {13--29},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a1/}
}
TY  - JOUR
AU  - A. G. Chechkina
AU  - V. A. Sadovnichy
TI  - Degeneration of Steklov–type boundary conditions in one spectral homogenization problem
JO  - Eurasian mathematical journal
PY  - 2015
SP  - 13
EP  - 29
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a1/
LA  - en
ID  - EMJ_2015_6_3_a1
ER  - 
%0 Journal Article
%A A. G. Chechkina
%A V. A. Sadovnichy
%T Degeneration of Steklov–type boundary conditions in one spectral homogenization problem
%J Eurasian mathematical journal
%D 2015
%P 13-29
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a1/
%G en
%F EMJ_2015_6_3_a1
A. G. Chechkina; V. A. Sadovnichy. Degeneration of Steklov–type boundary conditions in one spectral homogenization problem. Eurasian mathematical journal, Tome 6 (2015) no. 3, pp. 13-29. http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a1/