Some inequalities for second order differential operators with unbounded drift
Eurasian mathematical journal, Tome 6 (2015) no. 2, pp. 63-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study coercive estimates for some second-order degenerate and damped differential operators with unbounded coefficients. We also establish the conditions for invertibility of these operators.
@article{EMJ_2015_6_2_a3,
     author = {K. N. Ospanov and R. D. Akhmetkaliyeva},
     title = {Some inequalities for second order differential operators with unbounded drift},
     journal = {Eurasian mathematical journal},
     pages = {63--74},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_2_a3/}
}
TY  - JOUR
AU  - K. N. Ospanov
AU  - R. D. Akhmetkaliyeva
TI  - Some inequalities for second order differential operators with unbounded drift
JO  - Eurasian mathematical journal
PY  - 2015
SP  - 63
EP  - 74
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2015_6_2_a3/
LA  - en
ID  - EMJ_2015_6_2_a3
ER  - 
%0 Journal Article
%A K. N. Ospanov
%A R. D. Akhmetkaliyeva
%T Some inequalities for second order differential operators with unbounded drift
%J Eurasian mathematical journal
%D 2015
%P 63-74
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2015_6_2_a3/
%G en
%F EMJ_2015_6_2_a3
K. N. Ospanov; R. D. Akhmetkaliyeva. Some inequalities for second order differential operators with unbounded drift. Eurasian mathematical journal, Tome 6 (2015) no. 2, pp. 63-74. http://geodesic.mathdoc.fr/item/EMJ_2015_6_2_a3/

[1] K. Kh. Boimatov, “Separability theorems, weighted spaces and their applications”, Proc. Steklov Inst. Math., 170, 1987, 39–81 | MR

[2] R. Donninger, B. Schorkhuber, “A spectral mapping theorem for perturbed Ornstein–Uhlenbeck operators on $L_2(\mathbb{R}^d)$”, J. Func. Anal., 268:9 (2015) | DOI | MR | Zbl

[3] W. N. Everitt, M. Giertz, “Some inequalities associated with certain differential operators”, Math. Z., 126 (1972), 308–326 | DOI | MR | Zbl

[4] W. N. Everitt, M. Giertz, “Some properties of the domains of certain differential operators”, Proc. Lond. Math. Soc., 23 (1971), 301–324 | DOI | MR | Zbl

[5] M. V. Fedoryuk, Asymptotic methods for linear ordinary differential equations, Nauka, M., 1983 (in Russian) | MR | Zbl

[6] T. Kato, Perturbation theory for linear operators, Springer Science Business Media, 1995 | MR | Zbl

[7] G. Metafuni, D. Pallara, J. Pruss, R. Schnaubelt, “$L_p$-Theory for Elliptic Operators on $\mathbb{R}^d$ with singular coefficients”, Z. Anal. Anwendungen, 24 (2005), 497–521 | DOI | MR

[8] M. B. Muratbekov, M. M. Muratbekov, K. N. Ospanov, “On approximate properties of solutions of a nonlinear mixed-type equation”, Journal of Mathematical Sciences, 150:6 (2008), 2521–2530 | DOI | MR | Zbl

[9] M. A. Naimark, Linear differential operators, English transl., Ungar, New York, 1967 | Zbl

[10] G. E. Ornstein, L. S. Uhlenbeck, “On the theory of Brownian motion”, Phys. Review, 36 (1930), 823–841 | DOI | Zbl

[11] K. N. Ospanov, R. D. Akhmetkaliyeva, “Separation and the existence theorem for second order nonlinear differential equation”, Electron. J. Qual. Th. Dif. Eq., 66 (2012), 1–12 | DOI | MR

[12] K. N. Ospanov, “On the nonlinear generalized Cauchy–Riemann system on the whole plane”, Siberian Math. J., 38:2 (1997), 314–319 | DOI | MR | Zbl

[13] K. N. Ospanov, “Qualitative and approximate characteristics of solutions of Beltrami-type systems”, Comp. Var. Ell. Eq., 60:7 (2015), 1005–1014 | DOI | MR | Zbl

[14] K. Ospanov, “$L_1$-maximal regularity for differential equation with damped term”, Electron. J. Qual. Th. Dif. Eq., 39 (2015), 1–9 | DOI | MR

[15] M. Otelbaev, “Coercive estimates and separation theorems for elliptic equations in $\mathbb{R}^n$”, Proc. Steklov Inst. Math., 161, 1984, 213–239 | MR | Zbl

[16] I. N. Parasidisa, P. C. Tsekrekos, “Correct and selfadjoint problems for quadratic operators”, Eurasian Math. J., 1:2 (2010), 122–135 | MR

[17] E. I. Shemyakin, “Propagation of nonstationary perturbations in a visco-elastic medium”, Dokl. Akad. nauk SSSR, 104:1 (1955), 34–37 | MR

[18] A. N. Tikhonov, A. A. Samarskiy, Equations of mathematical physics, Nauka, M., 1973 (in Russian)

[19] S. S. Voit, “The propagation of the initial condensation in a viscous gas”, Uch. zap. Moscow st. univ. Mechanics, 5 (1954), 125–142 | MR

[20] M. C. Wang, G. E. Uhlenbeck, “On the theory of the Brownian motion, II”, Rev. of Modern Physics, 1945 | MR